Question
Simplify the expression
4sin2(4x)
Evaluate
sin2(2x)cos2(2x)
Multiply the terms
(sin(2x)cos(2x))2
Transform the expression
More Steps

Evaluate
sin(2x)cos(2x)
Use sin(2t)=2sintcost to transform the expression
2cos(x)sin(x)cos(2x)
Use cos(2t)=cos2t−sin2t to transform the expression
2cos(x)sin(x)(cos2(x)−sin2(x))
(2cos(x)sin(x)(cos2(x)−sin2(x)))2
Transform the expression
More Steps

Evaluate
cos2(x)−sin2(x)
Use cos2t=1−sin2t to transform the expression
1−sin2(x)−sin2(x)
Subtract the terms
1−2sin2(x)
(2cos(x)sin(x)(1−2sin2(x)))2
Transform the expression
More Steps

Evaluate
1−2sin2(x)
Transform the expression
More Steps

Evaluate
−2sin2(x)
Use sin2t=1−cos2t to transform the expression
−2(1−cos2(x))
Use the the distributive property to expand the expression
−2×1−2(−cos2(x))
Any expression multiplied by 1 remains the same
−2−2(−cos2(x))
Multiply the terms
−2+2cos2(x)
1−2+2cos2(x)
Subtract the numbers
−1+2cos2(x)
(2cos(x)sin(x)(−1+2cos2(x)))2
Transform the expression
More Steps

Evaluate
−1+2cos2(x)
Transform the expression
More Steps

Evaluate
2cos2(x)
Use 2cos2t=cos(2t)+1 to transform the expression
2×21+cos(2x)
Cancel out the common factor 2
1×(1+cos(2x))
Multiply the terms
1+cos(2x)
−1+1+cos(2x)
Since two opposites add up to 0,remove them form the expression
cos(2x)
(2cos(x)sin(x)cos(2x))2
Rewrite the expression
(2sin(4x))2
Solution
4sin2(4x)
Show Solution
