Question Solve the equation θ=kπ,k∈ZAlternative Form θ=180∘k,k∈Z Evaluate sin(θ)(2sin(θ)×1)=0Remove the parentheses sin(θ)×2sin(θ)×1=0Multiply the terms More Steps Evaluate sin(θ)×2sin(θ)×1Rewrite the expression sin(θ)×2sin(θ)Multiply the terms sin2(θ)×2Simplify 2sin2(θ) 2sin2(θ)=0Simplify the expression sin(θ)=0Use the inverse trigonometric function θ=arcsin(0)Calculate θ=0Solution θ=kπ,k∈ZAlternative Form θ=180∘k,k∈Z Show Solution Rewrite the equation y2=0 Evaluate sin(θ)(2sin(θ)×1)=0Evaluate More Steps Evaluate sin(θ)(2sin(θ)×1)Remove the parentheses sin(θ)×2sin(θ)×1Rewrite the expression sin(θ)×2sin(θ)Multiply the terms sin2(θ)×2Simplify 2sin2(θ) 2sin2(θ)=0Multiply both sides 2(rsin(θ))2=0To covert the equation to rectangular coordinates using conversion formulas,substitute rsinθ for y 2y2=0Solution y2=0 Show Solution Graph