Question
Solve the equation
b=sin(4x)cos(4x)b=−sin(4x)cos(4x)
Evaluate
asin(4x)×bcos(4x)=a1×b
Multiply the terms
absin(4x)cos(4x)=a1×b
Multiply the terms
absin(4x)cos(4x)=ab
Cross multiply
sin(4x)cos(4x)×a=ab×b
Simplify the equation
sin(4x)cos(4x)×a=ab2
Rewrite the expression
asin(4x)cos(4x)=ab2
Evaluate
sin(4x)cos(4x)=b2
Swap the sides of the equation
b2=sin(4x)cos(4x)
Take the root of both sides of the equation and remember to use both positive and negative roots
b=±sin(4x)cos(4x)
Solution
b=sin(4x)cos(4x)b=−sin(4x)cos(4x)
Show Solution
