Question
Simplify the expression
65025s3q3r3t3−225sqrt
Evaluate
sqrt((17sqrt×15)2−152)
Multiply the terms
sqrt((255sqrt)2−152)
Subtract the terms
More Steps

Simplify
(255sqrt)2−152
Rewrite the expression
65025s2q2r2t2−152
Evaluate the power
65025s2q2r2t2−225
sqrt(65025s2q2r2t2−225)
Apply the distributive property
sqrt×65025s2q2r2t2−sqrt×225
Multiply the terms
More Steps

Evaluate
sqrt×65025s2q2r2t2
Use the commutative property to reorder the terms
65025sqrts2q2r2t2
Multiply the terms
More Steps

Evaluate
s×s2
Use the product rule an×am=an+m to simplify the expression
s1+2
Add the numbers
s3
65025s3qrtq2r2t2
Multiply the terms
More Steps

Evaluate
q×q2
Use the product rule an×am=an+m to simplify the expression
q1+2
Add the numbers
q3
65025s3q3rtr2t2
Multiply the terms
More Steps

Evaluate
r×r2
Use the product rule an×am=an+m to simplify the expression
r1+2
Add the numbers
r3
65025s3q3r3t×t2
Multiply the terms
More Steps

Evaluate
t×t2
Use the product rule an×am=an+m to simplify the expression
t1+2
Add the numbers
t3
65025s3q3r3t3
65025s3q3r3t3−sqrt×225
Solution
65025s3q3r3t3−225sqrt
Show Solution

Factor the expression
225sqrt(17sqrt+1)(17sqrt−1)
Evaluate
sqrt((17sqrt×15)2−152)
Multiply the terms
sqrt((255sqrt)2−152)
Multiply the terms
More Steps

Evaluate
((255sqrt)2−152)sqrt
Rewrite the expression
sqrt((255sqrt)2−152)
Simplify
sqrt(65025s2q2r2t2−152)
sqrt(65025s2q2r2t2−152)
Use a2−b2=(a−b)(a+b) to factor the expression
sqrt×225(17sqrt+1)(17sqrt−1)
Solution
225sqrt(17sqrt+1)(17sqrt−1)
Show Solution
