Question
Simplify the expression
213×(cos(4π)+isin(4π))213×(cos(45π)+isin(45π))
Alternative Form
26+26×i−26−26×i
Evaluate
52i
Rewrite the complex number in polar form
More Steps

Evaluate
52i
Determine the modulus and the argument of the complex number
r=02+522θ=arctan(052)
Calculate
More Steps

Evaluate
02+522
Calculate
0+522
Add the numbers
2704
Write the number in exponential form with the base of 52
522
Reduce the index of the radical and exponent with 2
52
r=52θ=arctan(052)
Substitute the given values into the formula r(cosθ+isinθ)
52(cos(2π)+isin(2π))
52(cos(2π)+isin(2π))
Calculate the nth roots of a complex r(cos(θ)+i×sin(θ),using nz=nr(cosnθ+2kπ+isinnθ+2kπ)
52×(cos(22π+2kπ)+isin(22π+2kπ))
Simplify
213×(cos(22π+2kπ)+isin(22π+2kπ))
Since n=2,substitute k=0,1 into the expression
213×(cos(22π+2×0×π)+isin(22π+2×0×π))213×(cos(22π+2×1×π)+isin(22π+2×1×π))
Calculate
More Steps

Evaluate
22π+2×0×π
Any expression multiplied by 0 equals 0
22π+0
Removing 0 doesn't change the value,so remove it from the expression
22π
Rewrite the expression
2π×21
To multiply the fractions,multiply the numerators and denominators separately
2×2π
Multiply the numbers
4π
213×(cos(4π)+isin(4π))213×(cos(22π+2×1×π)+isin(22π+2×1×π))
Solution
More Steps

Evaluate
22π+2×1×π
Multiply the terms
22π+2π
Calculate
More Steps

Evaluate
2π+2π
Reduce fractions to a common denominator
2π+22π×2
Write all numerators above the common denominator
2π+2π×2
Multiply the terms
2π+4π
Add the numbers
25π
225π
Rewrite the expression
25π×21
To multiply the fractions,multiply the numerators and denominators separately
2×25π
Multiply the numbers
45π
213×(cos(4π)+isin(4π))213×(cos(45π)+isin(45π))
Alternative Form
26+26×i−26−26×i
Show Solution
