Question
Simplify the expression
cos(4π)+isin(4π)cos(45π)+isin(45π)
Alternative Form
22+22i−22−22i
Evaluate
i
Rewrite the complex number in polar form
More Steps

Evaluate
i
Determine the modulus and the argument of the complex number
r=02+12θ=arctan(01)
Calculate
More Steps

Evaluate
02+12
Calculate
0+12
1 raised to any power equals to 1
0+1
Removing 0 doesn't change the value,so remove it from the expression
1
Simplify the root
1
r=1θ=arctan(01)
Substitute the given values into the formula r(cosθ+isinθ)
1×(cos(2π)+isin(2π))
1×(cos(2π)+isin(2π))
Calculate the nth roots of a complex r(cos(θ)+i×sin(θ),using nz=nr(cosnθ+2kπ+isinnθ+2kπ)
1×(cos(22π+2kπ)+isin(22π+2kπ))
Simplify
1×(cos(22π+2kπ)+isin(22π+2kπ))
Simplify
cos(22π+2kπ)+isin(22π+2kπ)
Since n=2,substitute k=0,1 into the expression
cos(22π+2×0×π)+isin(22π+2×0×π)cos(22π+2×1×π)+isin(22π+2×1×π)
Calculate
More Steps

Evaluate
22π+2×0×π
Any expression multiplied by 0 equals 0
22π+0
Removing 0 doesn't change the value,so remove it from the expression
22π
Rewrite the expression
2π×21
To multiply the fractions,multiply the numerators and denominators separately
2×2π
Multiply the numbers
4π
cos(4π)+isin(4π)cos(22π+2×1×π)+isin(22π+2×1×π)
Solution
More Steps

Evaluate
22π+2×1×π
Multiply the terms
22π+2π
Calculate
More Steps

Evaluate
2π+2π
Reduce fractions to a common denominator
2π+22π×2
Write all numerators above the common denominator
2π+2π×2
Multiply the terms
2π+4π
Add the numbers
25π
225π
Rewrite the expression
25π×21
To multiply the fractions,multiply the numerators and denominators separately
2×25π
Multiply the numbers
45π
cos(4π)+isin(4π)cos(45π)+isin(45π)
Alternative Form
22+22i−22−22i
Show Solution
