Question
Function
Find the first partial derivative with respect to l
Find the first partial derivative with respect to g
∂l∂t=l×gπ
Evaluate
t=2π×gl
Multiply the terms
t=g2πl
Find the first partial derivative by treating the variable g as a constant and differentiating with respect to l
∂l∂t=∂l∂(g2πl)
Use differentiation rule ∂x∂(g(x)f(x))=(g(x))2∂x∂(f(x))×g(x)−f(x)×∂x∂(g(x))
∂l∂t=g2∂l∂(2πl)g−2πl×∂l∂(g)
Evaluate
More Steps

Evaluate
∂l∂(2πl)
Use differentiation rule ∂x∂(f(x)×g(x))=∂x∂(f(x))×g(x)+f(x)×∂x∂(g(x))
∂l∂(2π)l+2π×∂l∂(l)
Evaluate
0×l+2π×∂l∂(l)
Evaluate
0+2π×∂l∂(l)
Evaluate
0+2π×2l1
Evaluate
0+l21π
Removing 0 doesn't change the value,so remove it from the expression
l21π
∂l∂t=g2l21π×g−2πl×∂l∂(g)
Use ∂x∂(c)=0 to find derivative
∂l∂t=g2l21π×g−2πl×0
Evaluate
∂l∂t=g2l21πg−2πl×0
Any expression multiplied by 0 equals 0
∂l∂t=g2l21πg−0
Removing 0 doesn't change the value,so remove it from the expression
∂l∂t=g2l21πg
Evaluate
More Steps

Evaluate
g2l21πg
Multiply by the reciprocal
l21πg×g21
Cancel out the common factor g
l21π×g1
Multiply the terms
l21gπ
∂l∂t=l21gπ
Solution
∂l∂t=l×gπ
Show Solution

Solve the equation
Solve for g
Solve for l
Solve for t
g=t2πl
Evaluate
t=2π×gl
Multiply the terms
t=g2πl
Swap the sides of the equation
g2πl=t
Cross multiply
2πl=gt
Simplify the equation
2πl=tg
Swap the sides of the equation
tg=2πl
Divide both sides
ttg=t2πl
Solution
g=t2πl
Show Solution
