Question
Solve the equation
t1=−4800724006,t2=0
Alternative Form
t1≈−0.164468,t2=0
Evaluate
t÷150=−16t2×128t6
Rewrite the expression
150t=−16t2×128t6
Multiply
More Steps

Evaluate
−16t2×128t6
Multiply the terms
−2048t2×t6
Multiply the terms with the same base by adding their exponents
−2048t2+6
Add the numbers
−2048t8
150t=−2048t8
Cross multiply
t=150(−2048t8)
Simplify the equation
t=−307200t8
Add or subtract both sides
t−(−307200t8)=0
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
t+307200t8=0
Factor the expression
t(1+307200t7)=0
Separate the equation into 2 possible cases
t=01+307200t7=0
Solve the equation
More Steps

Evaluate
1+307200t7=0
Move the constant to the right-hand side and change its sign
307200t7=0−1
Removing 0 doesn't change the value,so remove it from the expression
307200t7=−1
Divide both sides
307200307200t7=307200−1
Divide the numbers
t7=307200−1
Use b−a=−ba=−ba to rewrite the fraction
t7=−3072001
Take the 7-th root on both sides of the equation
7t7=7−3072001
Calculate
t=7−3072001
Simplify the root
More Steps

Evaluate
7−3072001
An odd root of a negative radicand is always a negative
−73072001
To take a root of a fraction,take the root of the numerator and denominator separately
−730720071
Simplify the radical expression
−73072001
Simplify the radical expression
−2724001
Multiply by the Conjugate
272400×724006−724006
Multiply the numbers
4800−724006
Calculate
−4800724006
t=−4800724006
t=0t=−4800724006
Solution
t1=−4800724006,t2=0
Alternative Form
t1≈−0.164468,t2=0
Show Solution
