Question
Solve the quadratic equation
Solve using the quadratic formula
Solve by completing the square
Solve using the PQ formula
t1=20−202,t2=20+202
Alternative Form
t1≈−8.284271,t2≈48.284271
Evaluate
t2−40t−400=0
Substitute a=1,b=−40 and c=−400 into the quadratic formula t=2a−b±b2−4ac
t=240±(−40)2−4(−400)
Simplify the expression
More Steps

Evaluate
(−40)2−4(−400)
Multiply the numbers
More Steps

Evaluate
4(−400)
Multiplying or dividing an odd number of negative terms equals a negative
−4×400
Multiply the numbers
−1600
(−40)2−(−1600)
Rewrite the expression
402−(−1600)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
402+1600
Evaluate the power
1600+1600
Add the numbers
3200
t=240±3200
Simplify the radical expression
More Steps

Evaluate
3200
Write the expression as a product where the root of one of the factors can be evaluated
1600×2
Write the number in exponential form with the base of 40
402×2
The root of a product is equal to the product of the roots of each factor
402×2
Reduce the index of the radical and exponent with 2
402
t=240±402
Separate the equation into 2 possible cases
t=240+402t=240−402
Simplify the expression
More Steps

Evaluate
t=240+402
Divide the terms
More Steps

Evaluate
240+402
Rewrite the expression
22(20+202)
Reduce the fraction
20+202
t=20+202
t=20+202t=240−402
Simplify the expression
More Steps

Evaluate
t=240−402
Divide the terms
More Steps

Evaluate
240−402
Rewrite the expression
22(20−202)
Reduce the fraction
20−202
t=20−202
t=20+202t=20−202
Solution
t1=20−202,t2=20+202
Alternative Form
t1≈−8.284271,t2≈48.284271
Show Solution
