Question
Solve the quadratic equation
Solve using the quadratic formula
Solve by completing the square
Solve using the PQ formula
t1=8−114,t2=8+114
Alternative Form
t1≈−2.677078,t2≈18.677078
Evaluate
t2−16t−50=0
Substitute a=1,b=−16 and c=−50 into the quadratic formula t=2a−b±b2−4ac
t=216±(−16)2−4(−50)
Simplify the expression
More Steps

Evaluate
(−16)2−4(−50)
Multiply the numbers
More Steps

Evaluate
4(−50)
Multiplying or dividing an odd number of negative terms equals a negative
−4×50
Multiply the numbers
−200
(−16)2−(−200)
Rewrite the expression
162−(−200)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
162+200
Evaluate the power
256+200
Add the numbers
456
t=216±456
Simplify the radical expression
More Steps

Evaluate
456
Write the expression as a product where the root of one of the factors can be evaluated
4×114
Write the number in exponential form with the base of 2
22×114
The root of a product is equal to the product of the roots of each factor
22×114
Reduce the index of the radical and exponent with 2
2114
t=216±2114
Separate the equation into 2 possible cases
t=216+2114t=216−2114
Simplify the expression
More Steps

Evaluate
t=216+2114
Divide the terms
More Steps

Evaluate
216+2114
Rewrite the expression
22(8+114)
Reduce the fraction
8+114
t=8+114
t=8+114t=216−2114
Simplify the expression
More Steps

Evaluate
t=216−2114
Divide the terms
More Steps

Evaluate
216−2114
Rewrite the expression
22(8−114)
Reduce the fraction
8−114
t=8−114
t=8+114t=8−114
Solution
t1=8−114,t2=8+114
Alternative Form
t1≈−2.677078,t2≈18.677078
Show Solution
