Question
Find the roots
t1=1−401,t2=1+401
Alternative Form
t1≈−19.024984,t2≈21.024984
Evaluate
t2−2t−400
To find the roots of the expression,set the expression equal to 0
t2−2t−400=0
Substitute a=1,b=−2 and c=−400 into the quadratic formula t=2a−b±b2−4ac
t=22±(−2)2−4(−400)
Simplify the expression
More Steps

Evaluate
(−2)2−4(−400)
Multiply the numbers
More Steps

Evaluate
4(−400)
Multiplying or dividing an odd number of negative terms equals a negative
−4×400
Multiply the numbers
−1600
(−2)2−(−1600)
Rewrite the expression
22−(−1600)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
22+1600
Evaluate the power
4+1600
Add the numbers
1604
t=22±1604
Simplify the radical expression
More Steps

Evaluate
1604
Write the expression as a product where the root of one of the factors can be evaluated
4×401
Write the number in exponential form with the base of 2
22×401
The root of a product is equal to the product of the roots of each factor
22×401
Reduce the index of the radical and exponent with 2
2401
t=22±2401
Separate the equation into 2 possible cases
t=22+2401t=22−2401
Simplify the expression
More Steps

Evaluate
t=22+2401
Divide the terms
More Steps

Evaluate
22+2401
Rewrite the expression
22(1+401)
Reduce the fraction
1+401
t=1+401
t=1+401t=22−2401
Simplify the expression
More Steps

Evaluate
t=22−2401
Divide the terms
More Steps

Evaluate
22−2401
Rewrite the expression
22(1−401)
Reduce the fraction
1−401
t=1−401
t=1+401t=1−401
Solution
t1=1−401,t2=1+401
Alternative Form
t1≈−19.024984,t2≈21.024984
Show Solution
