Question
Factor the expression
21(2t2−60t−225)
Evaluate
t2−30t−2225
Solution
21(2t2−60t−225)
Show Solution

Find the roots
t1=230−156,t2=230+156
Alternative Form
t1≈−3.371173,t2≈33.371173
Evaluate
t2−30t−2225
To find the roots of the expression,set the expression equal to 0
t2−30t−2225=0
Multiply both sides
2(t2−30t−2225)=2×0
Calculate
2t2−60t−225=0
Substitute a=2,b=−60 and c=−225 into the quadratic formula t=2a−b±b2−4ac
t=2×260±(−60)2−4×2(−225)
Simplify the expression
t=460±(−60)2−4×2(−225)
Simplify the expression
More Steps

Evaluate
(−60)2−4×2(−225)
Multiply
More Steps

Multiply the terms
4×2(−225)
Rewrite the expression
−4×2×225
Multiply the terms
−1800
(−60)2−(−1800)
Rewrite the expression
602−(−1800)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
602+1800
Evaluate the power
3600+1800
Add the numbers
5400
t=460±5400
Simplify the radical expression
More Steps

Evaluate
5400
Write the expression as a product where the root of one of the factors can be evaluated
900×6
Write the number in exponential form with the base of 30
302×6
The root of a product is equal to the product of the roots of each factor
302×6
Reduce the index of the radical and exponent with 2
306
t=460±306
Separate the equation into 2 possible cases
t=460+306t=460−306
Simplify the expression
More Steps

Evaluate
t=460+306
Divide the terms
More Steps

Evaluate
460+306
Rewrite the expression
42(30+156)
Cancel out the common factor 2
230+156
t=230+156
t=230+156t=460−306
Simplify the expression
More Steps

Evaluate
t=460−306
Divide the terms
More Steps

Evaluate
460−306
Rewrite the expression
42(30−156)
Cancel out the common factor 2
230−156
t=230−156
t=230+156t=230−156
Solution
t1=230−156,t2=230+156
Alternative Form
t1≈−3.371173,t2≈33.371173
Show Solution
