Question Simplify the expression t5−1 Evaluate t5×1−1Solution t5−1 Show Solution Factor the expression (t−1)(t4+t3+t2+t+1) Evaluate t5×1−1Any expression multiplied by 1 remains the same t5−1Calculate t5+t4+t3+t2+t−t4−t3−t2−t−1Rewrite the expression t×t4+t×t3+t×t2+t×t+t−t4−t3−t2−t−1Factor out t from the expression t(t4+t3+t2+t+1)−t4−t3−t2−t−1Factor out −1 from the expression t(t4+t3+t2+t+1)−(t4+t3+t2+t+1)Solution (t−1)(t4+t3+t2+t+1) Show Solution Find the roots t=1 Evaluate t5×1−1To find the roots of the expression,set the expression equal to 0 t5×1−1=0Any expression multiplied by 1 remains the same t5−1=0Move the constant to the right-hand side and change its sign t5=0+1Removing 0 doesn't change the value,so remove it from the expression t5=1Take the 5-th root on both sides of the equation 5t5=51Calculate t=51Solution t=1 Show Solution