Question
Solve the differential equation
t=2w2+C,C∈R
Evaluate
t′=w
Rewrite the expression
dwdt=w
Transform the expression
dt=wdw
Integrate the left-hand side of the equation with respect to t and the right-hand side of the equation with respect to w
∫1dt=∫wdw
Calculate
More Steps

Evaluate
∫1dt
Use the property of integral ∫kdx=kx
t
Add the constant of integral C1
t+C1,C1∈R
t+C1=∫wdw,C1∈R
Calculate
More Steps

Evaluate
∫wdw
Use the property of integral ∫xndx=n+1xn+1
1+1w1+1
Add the numbers
1+1w2
Add the numbers
2w2
Add the constant of integral C2
2w2+C2,C2∈R
t+C1=2w2+C2,C1∈R,C2∈R
Solution
t=2w2+C,C∈R
Show Solution
