Question
Function
t′(n)=2t
Evaluate
t(n)=2t(n−1)×1
Any expression multiplied by 1 remains the same
t(n)=2t(n−1)
Take the derivative of both sides
t′(n)=dnd(2t(n−1))
Calculate
t′(n)=dnd(2tn−2t)
Use differentiation rule dxd(f(x)±g(x))=dxd(f(x))±dxd(g(x))
t′(n)=dnd(2tn)+dnd(−2t)
Calculate
More Steps

Calculate
dnd(2tn)
Use differentiation rule dxd(cf(x))=c×dxd(f(x))
2t×dnd(n)
Use dxdxn=nxn−1 to find derivative
2t×1
Any expression multiplied by 1 remains the same
2t
t′(n)=2t+dnd(−2t)
Use dxd(c)=0 to find derivative
t′(n)=2t+0
Solution
t′(n)=2t
Show Solution
