Question
Simplify the expression
−eiv2rt2na2tan(x)
Evaluate
tan(x)×antirivative
Rewrite the expression in exponential form
tan(x)×anti3rvatve
Evaluate the power
More Steps

Evaluate
i3
Calculate
i2×i
Calculate
−i
tan(x)×ant(−i)rvatve
Rewrite the expression
−tan(x)×antirvatve
Multiply the terms
−tan(x)×a2ntirvtve
Multiply the terms
−tan(x)×a2nt2irv×ve
Multiply the terms
−tan(x)×a2nt2irv2e
Multiply the terms
More Steps

Evaluate
tan(x)×a2nt2irv2e
Multiply the terms
a2tan(x)×nt2irv2e
Use the commutative property to reorder the terms
ia2tan(x)×nt2rv2e
Multiply the terms
eia2tan(x)×nt2rv2
−eia2tan(x)×nt2rv2
Calculate
−eia2×cos(x)sin(x)×nt2rv2
Calculate
−cos(x)eia2sin(x)×nt2rv2
Rewrite the expression
−cos(x)eiv2rt2na2sin(x)
Rewrite the expression
−eiv2cos−1(x)×rt2na2sin(x)
Rewrite the expression
−eisin(x)×a2nt2rcos−1(x)×v2
Rewrite the expression
−eiv2rt2na2cos−1(x)sin(x)
Solution
−eiv2rt2na2tan(x)
Show Solution
