Question
Function
Find the first partial derivative with respect to w
Find the first partial derivative with respect to m
∂w∂u=m21838
Evaluate
u=1838×m2w
Multiply the terms
u=m21838w
Find the first partial derivative by treating the variable m as a constant and differentiating with respect to w
∂w∂u=∂w∂(m21838w)
Use differentiation rule ∂x∂(g(x)f(x))=(g(x))2∂x∂(f(x))×g(x)−f(x)×∂x∂(g(x))
∂w∂u=(m2)2∂w∂(1838w)m2−1838w×∂w∂(m2)
Evaluate
More Steps

Evaluate
∂w∂(1838w)
Use differentiation rule ∂x∂(cf(x))=c×∂x∂(f(x))
1838×∂w∂(w)
Use ∂x∂xn=nxn−1 to find derivative
1838×1
Multiply the terms
1838
∂w∂u=(m2)21838m2−1838w×∂w∂(m2)
Use ∂x∂(c)=0 to find derivative
∂w∂u=(m2)21838m2−1838w×0
Any expression multiplied by 0 equals 0
∂w∂u=(m2)21838m2−0
Evaluate
More Steps

Evaluate
(m2)2
Multiply the exponents
m2×2
Multiply the terms
m4
∂w∂u=m41838m2−0
Removing 0 doesn't change the value,so remove it from the expression
∂w∂u=m41838m2
Solution
More Steps

Evaluate
m41838m2
Use the product rule aman=an−m to simplify the expression
m4−21838
Reduce the fraction
m21838
∂w∂u=m21838
Show Solution

Solve the equation
Solve for m
Solve for u
Solve for w
m=∣u∣1838wum=−∣u∣1838wu
Evaluate
u=1838×m2w
Multiply the terms
u=m21838w
Swap the sides of the equation
m21838w=u
Cross multiply
1838w=m2u
Simplify the equation
1838w=um2
Swap the sides of the equation
um2=1838w
Divide both sides
uum2=u1838w
Divide the numbers
m2=u1838w
Take the root of both sides of the equation and remember to use both positive and negative roots
m=±u1838w
Simplify the expression
More Steps

Evaluate
u1838w
Rewrite the expression
u×u1838wu
Calculate
u21838wu
To take a root of a fraction,take the root of the numerator and denominator separately
u21838wu
Simplify the radical expression
∣u∣1838wu
m=±∣u∣1838wu
Solution
m=∣u∣1838wum=−∣u∣1838wu
Show Solution
