Question
Simplify the expression
3v4+1
Evaluate
v4×3−i6
Evaluate the power
More Steps

Evaluate
i6
Evaluate
i4+2
Calculate
11×i2
Calculate
i2
Evaluate the power
−1
v4×3−(−1)
Use the commutative property to reorder the terms
3v4−(−1)
Solution
3v4+1
Show Solution

Find the roots
v1=−64108+64108i,v2=64108−64108i
Alternative Form
v1≈−0.537285+0.537285i,v2≈0.537285−0.537285i
Evaluate
v4×3−i6
To find the roots of the expression,set the expression equal to 0
v4×3−i6=0
Evaluate the power
More Steps

Evaluate
i6
Evaluate
i4+2
Calculate
11×i2
Calculate
i2
Evaluate the power
−1
v4×3−(−1)=0
Use the commutative property to reorder the terms
3v4−(−1)=0
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
3v4+1=0
Move the constant to the right-hand side and change its sign
3v4=0−1
Removing 0 doesn't change the value,so remove it from the expression
3v4=−1
Divide both sides
33v4=3−1
Divide the numbers
v4=3−1
Use b−a=−ba=−ba to rewrite the fraction
v4=−31
Take the root of both sides of the equation and remember to use both positive and negative roots
v=±4−31
Simplify the expression
More Steps

Evaluate
4−31
To take a root of a fraction,take the root of the numerator and denominator separately
4−341
Simplify the radical expression
4−31
Simplify the radical expression
More Steps

Evaluate
4−3
Rewrite the expression
43×(22+22i)
Apply the distributive property
43×22+43×22i
Multiply the numbers
2412+43×22i
Multiply the numbers
2412+2412i
2412+2412i1
Multiply by the Conjugate
(2412+2412i)(2412−2412i)2412−2412i
Calculate
More Steps

Evaluate
(2412+2412i)(2412−2412i)
Use (a+b)(a−b)=a2−b2 to simplify the product
(2412)2−(2412i)2
Evaluate the power
23−(2412i)2
Evaluate the power
23−(−23)
Calculate
3
32412−2412i
Simplify
23412−23412i
Rearrange the numbers
More Steps

Evaluate
23412
Multiply by the Conjugate
23×3412×3
Multiply the numbers
23×34108
Multiply the numbers
64108
64108−23412i
Rearrange the numbers
More Steps

Evaluate
−23412
Multiply by the Conjugate
23×3−412×3
Multiply the numbers
23×3−4108
Multiply the numbers
6−4108
Calculate
−64108
64108−64108i
v=±(64108−64108i)
Separate the equation into 2 possible cases
v=64108−64108iv=−64108+64108i
Solution
v1=−64108+64108i,v2=64108−64108i
Alternative Form
v1≈−0.537285+0.537285i,v2≈0.537285−0.537285i
Show Solution
