Question
Factor the expression
61(2x+3)(3x−4)
Evaluate
x2+61x−2
Rewrite the expression
61×6x2+61x−61×12
Factor out 61 from the expression
61(6x2+x−12)
Solution
More Steps

Evaluate
6x2+x−12
Rewrite the expression
6x2+(−8+9)x−12
Calculate
6x2−8x+9x−12
Rewrite the expression
2x×3x−2x×4+3×3x−3×4
Factor out 2x from the expression
2x(3x−4)+3×3x−3×4
Factor out 3 from the expression
2x(3x−4)+3(3x−4)
Factor out 3x−4 from the expression
(2x+3)(3x−4)
61(2x+3)(3x−4)
Show Solution

Find the roots
x1=−23,x2=34
Alternative Form
x1=−1.5,x2=1.3˙
Evaluate
x2+61x−2
To find the roots of the expression,set the expression equal to 0
x2+61x−2=0
Factor the expression
More Steps

Evaluate
x2+61x−2
Rewrite the expression
61×6x2+61x−61×12
Factor out 61 from the expression
61(6x2+x−12)
Factor the expression
More Steps

Evaluate
6x2+x−12
Rewrite the expression
6x2+(−8+9)x−12
Calculate
6x2−8x+9x−12
Rewrite the expression
2x×3x−2x×4+3×3x−3×4
Factor out 2x from the expression
2x(3x−4)+3×3x−3×4
Factor out 3 from the expression
2x(3x−4)+3(3x−4)
Factor out 3x−4 from the expression
(2x+3)(3x−4)
61(2x+3)(3x−4)
61(2x+3)(3x−4)=0
Divide the terms
(2x+3)(3x−4)=0
When the product of factors equals 0,at least one factor is 0
2x+3=03x−4=0
Solve the equation for x
More Steps

Evaluate
2x+3=0
Move the constant to the right-hand side and change its sign
2x=0−3
Removing 0 doesn't change the value,so remove it from the expression
2x=−3
Divide both sides
22x=2−3
Divide the numbers
x=2−3
Use b−a=−ba=−ba to rewrite the fraction
x=−23
x=−233x−4=0
Solve the equation for x
More Steps

Evaluate
3x−4=0
Move the constant to the right-hand side and change its sign
3x=0+4
Removing 0 doesn't change the value,so remove it from the expression
3x=4
Divide both sides
33x=34
Divide the numbers
x=34
x=−23x=34
Solution
x1=−23,x2=34
Alternative Form
x1=−1.5,x2=1.3˙
Show Solution
