Question
Solve the equation
x1=123−41419,x2=123+41419
Alternative Form
x1≈−27.678466,x2≈273.678466
Evaluate
x×5x−246−15=1500
Multiply the terms
5x(x−246)−15=1500
Multiply both sides of the equation by LCD
(5x(x−246)−15)×5=1500×5
Simplify the equation
More Steps

Evaluate
(5x(x−246)−15)×5
Apply the distributive property
5x(x−246)×5−15×5
Simplify
x(x−246)−15×5
Multiply the numbers
x(x−246)−75
Expand the expression
More Steps

Evaluate
x(x−246)
Apply the distributive property
x×x−x×246
Multiply the terms
x2−x×246
Use the commutative property to reorder the terms
x2−246x
x2−246x−75
x2−246x−75=1500×5
Simplify the equation
x2−246x−75=7500
Move the expression to the left side
x2−246x−75−7500=0
Subtract the numbers
x2−246x−7575=0
Substitute a=1,b=−246 and c=−7575 into the quadratic formula x=2a−b±b2−4ac
x=2246±(−246)2−4(−7575)
Simplify the expression
More Steps

Evaluate
(−246)2−4(−7575)
Multiply the numbers
More Steps

Evaluate
4(−7575)
Multiplying or dividing an odd number of negative terms equals a negative
−4×7575
Multiply the numbers
−30300
(−246)2−(−30300)
Rewrite the expression
2462−(−30300)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
2462+30300
Evaluate the power
60516+30300
Add the numbers
90816
x=2246±90816
Simplify the radical expression
More Steps

Evaluate
90816
Write the expression as a product where the root of one of the factors can be evaluated
64×1419
Write the number in exponential form with the base of 8
82×1419
The root of a product is equal to the product of the roots of each factor
82×1419
Reduce the index of the radical and exponent with 2
81419
x=2246±81419
Separate the equation into 2 possible cases
x=2246+81419x=2246−81419
Simplify the expression
More Steps

Evaluate
x=2246+81419
Divide the terms
More Steps

Evaluate
2246+81419
Rewrite the expression
22(123+41419)
Reduce the fraction
123+41419
x=123+41419
x=123+41419x=2246−81419
Simplify the expression
More Steps

Evaluate
x=2246−81419
Divide the terms
More Steps

Evaluate
2246−81419
Rewrite the expression
22(123−41419)
Reduce the fraction
123−41419
x=123−41419
x=123+41419x=123−41419
Solution
x1=123−41419,x2=123+41419
Alternative Form
x1≈−27.678466,x2≈273.678466
Show Solution
