Question
Solve the equation
x1=183−210266,x2=183+210266
Alternative Form
x1≈−19.642542,x2≈385.642542
Evaluate
x×5x−366−15=1500
Multiply the terms
5x(x−366)−15=1500
Multiply both sides of the equation by LCD
(5x(x−366)−15)×5=1500×5
Simplify the equation
More Steps

Evaluate
(5x(x−366)−15)×5
Apply the distributive property
5x(x−366)×5−15×5
Simplify
x(x−366)−15×5
Multiply the numbers
x(x−366)−75
Expand the expression
More Steps

Evaluate
x(x−366)
Apply the distributive property
x×x−x×366
Multiply the terms
x2−x×366
Use the commutative property to reorder the terms
x2−366x
x2−366x−75
x2−366x−75=1500×5
Simplify the equation
x2−366x−75=7500
Move the expression to the left side
x2−366x−75−7500=0
Subtract the numbers
x2−366x−7575=0
Substitute a=1,b=−366 and c=−7575 into the quadratic formula x=2a−b±b2−4ac
x=2366±(−366)2−4(−7575)
Simplify the expression
More Steps

Evaluate
(−366)2−4(−7575)
Multiply the numbers
More Steps

Evaluate
4(−7575)
Multiplying or dividing an odd number of negative terms equals a negative
−4×7575
Multiply the numbers
−30300
(−366)2−(−30300)
Rewrite the expression
3662−(−30300)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
3662+30300
x=2366±3662+30300
Simplify the radical expression
More Steps

Evaluate
3662+30300
Add the numbers
164256
Write the expression as a product where the root of one of the factors can be evaluated
16×10266
Write the number in exponential form with the base of 4
42×10266
The root of a product is equal to the product of the roots of each factor
42×10266
Reduce the index of the radical and exponent with 2
410266
x=2366±410266
Separate the equation into 2 possible cases
x=2366+410266x=2366−410266
Simplify the expression
More Steps

Evaluate
x=2366+410266
Divide the terms
More Steps

Evaluate
2366+410266
Rewrite the expression
22(183+210266)
Reduce the fraction
183+210266
x=183+210266
x=183+210266x=2366−410266
Simplify the expression
More Steps

Evaluate
x=2366−410266
Divide the terms
More Steps

Evaluate
2366−410266
Rewrite the expression
22(183−210266)
Reduce the fraction
183−210266
x=183−210266
x=183+210266x=183−210266
Solution
x1=183−210266,x2=183+210266
Alternative Form
x1≈−19.642542,x2≈385.642542
Show Solution
