Question
Solve the quadratic equation
Solve using the quadratic formula
Solve by completing the square
Solve using the PQ formula
x1=20−105,x2=20+105
Alternative Form
x1≈−2.36068,x2≈42.36068
Evaluate
x(x−40)=100
Expand the expression
More Steps

Evaluate
x(x−40)
Apply the distributive property
x×x−x×40
Multiply the terms
x2−x×40
Use the commutative property to reorder the terms
x2−40x
x2−40x=100
Move the expression to the left side
x2−40x−100=0
Substitute a=1,b=−40 and c=−100 into the quadratic formula x=2a−b±b2−4ac
x=240±(−40)2−4(−100)
Simplify the expression
More Steps

Evaluate
(−40)2−4(−100)
Multiply the numbers
More Steps

Evaluate
4(−100)
Multiplying or dividing an odd number of negative terms equals a negative
−4×100
Multiply the numbers
−400
(−40)2−(−400)
Rewrite the expression
402−(−400)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
402+400
Evaluate the power
1600+400
Add the numbers
2000
x=240±2000
Simplify the radical expression
More Steps

Evaluate
2000
Write the expression as a product where the root of one of the factors can be evaluated
400×5
Write the number in exponential form with the base of 20
202×5
The root of a product is equal to the product of the roots of each factor
202×5
Reduce the index of the radical and exponent with 2
205
x=240±205
Separate the equation into 2 possible cases
x=240+205x=240−205
Simplify the expression
More Steps

Evaluate
x=240+205
Divide the terms
More Steps

Evaluate
240+205
Rewrite the expression
22(20+105)
Reduce the fraction
20+105
x=20+105
x=20+105x=240−205
Simplify the expression
More Steps

Evaluate
x=240−205
Divide the terms
More Steps

Evaluate
240−205
Rewrite the expression
22(20−105)
Reduce the fraction
20−105
x=20−105
x=20+105x=20−105
Solution
x1=20−105,x2=20+105
Alternative Form
x1≈−2.36068,x2≈42.36068
Show Solution
