Question
Solve the quadratic equation
Solve using the quadratic formula
Solve by completing the square
Solve using the PQ formula
x1=3015−285,x2=3015+285
Alternative Form
x1≈−0.062731,x2≈1.062731
Evaluate
x×15(x−1)=1
Use the commutative property to reorder the terms
15x(x−1)=1
Expand the expression
More Steps

Evaluate
15x(x−1)
Apply the distributive property
15x×x−15x×1
Multiply the terms
15x2−15x×1
Any expression multiplied by 1 remains the same
15x2−15x
15x2−15x=1
Move the expression to the left side
15x2−15x−1=0
Substitute a=15,b=−15 and c=−1 into the quadratic formula x=2a−b±b2−4ac
x=2×1515±(−15)2−4×15(−1)
Simplify the expression
x=3015±(−15)2−4×15(−1)
Simplify the expression
More Steps

Evaluate
(−15)2−4×15(−1)
Multiply
More Steps

Multiply the terms
4×15(−1)
Any expression multiplied by 1 remains the same
−4×15
Multiply the terms
−60
(−15)2−(−60)
Rewrite the expression
152−(−60)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
152+60
Evaluate the power
225+60
Add the numbers
285
x=3015±285
Separate the equation into 2 possible cases
x=3015+285x=3015−285
Solution
x1=3015−285,x2=3015+285
Alternative Form
x1≈−0.062731,x2≈1.062731
Show Solution
