Question
Solve the system of equations
(x1,y1)=(417+313,6−17+313)(x2,y2)=(417−313,−617+313)
Evaluate
{xy=12x−3y=17
Solve the equation for x
More Steps

Evaluate
2x−3y=17
Move the expression to the right-hand side and change its sign
2x=17+3y
Divide both sides
22x=217+3y
Divide the numbers
x=217+3y
{xy=1x=217+3y
Substitute the given value of x into the equation xy=1
217+3y×y=1
Simplify
More Steps

Evaluate
217+3y×y
Multiply the terms
2(17+3y)y
Multiply the terms
2y(17+3y)
2y(17+3y)=1
Cross multiply
y(17+3y)=2
Expand the expression
More Steps

Evaluate
y(17+3y)
Apply the distributive property
y×17+y×3y
Use the commutative property to reorder the terms
17y+y×3y
Multiply the terms
More Steps

Evaluate
y×3y
Use the commutative property to reorder the terms
3y×y
Multiply the terms
3y2
17y+3y2
17y+3y2=2
Move the expression to the left side
17y+3y2−2=0
Rewrite in standard form
3y2+17y−2=0
Substitute a=3,b=17 and c=−2 into the quadratic formula y=2a−b±b2−4ac
y=2×3−17±172−4×3(−2)
Simplify the expression
y=6−17±172−4×3(−2)
Simplify the expression
More Steps

Evaluate
172−4×3(−2)
Multiply
More Steps

Multiply the terms
4×3(−2)
Rewrite the expression
−4×3×2
Multiply the terms
−24
172−(−24)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
172+24
Evaluate the power
289+24
Add the numbers
313
y=6−17±313
Separate the equation into 2 possible cases
y=6−17+313y=6−17−313
Use b−a=−ba=−ba to rewrite the fraction
y=6−17+313y=−617+313
Evaluate the logic
y=6−17+313∪y=−617+313
Rearrange the terms
{x=217+3yy=6−17+313∪{x=217+3yy=−617+313
Calculate
More Steps

Evaluate
{x=217+3yy=6−17+313
Substitute the given value of y into the equation x=217+3y
x=217+3×6−17+313
Calculate
x=417+313
Calculate
{x=417+313y=6−17+313
{x=417+313y=6−17+313∪{x=217+3yy=−617+313
Calculate
More Steps

Evaluate
{x=217+3yy=−617+313
Substitute the given value of y into the equation x=217+3y
x=217+3(−617+313)
Calculate
x=417−313
Calculate
{x=417−313y=−617+313
{x=417+313y=6−17+313∪{x=417−313y=−617+313
Check the solution
More Steps

Check the solution
{417+313×6−17+313=12×417+313−3×6−17+313=17
Simplify
{1=117=17
Evaluate
true
{x=417+313y=6−17+313∪{x=417−313y=−617+313
Check the solution
More Steps

Check the solution
⎩⎨⎧417−313×(−617+313)=12×417−313−3(−617+313)=17
Simplify
{1=117=17
Evaluate
true
{x=417+313y=6−17+313∪{x=417−313y=−617+313
Solution
(x1,y1)=(417+313,6−17+313)(x2,y2)=(417−313,−617+313)
Show Solution
