Question
Solve the system of equations
(x1,y1)=(643+393,2−3+393)(x2,y2)=(643−393,−23+393)
Evaluate
{xy=32x−y32x−y=3
Solve the equation for y
More Steps

Evaluate
32x−y=3
Move the expression to the right-hand side and change its sign
−y=3−32x
Change the signs on both sides of the equation
y=−3+32x
{xy=32x−yy=−3+32x
Substitute the given value of y into the equation xy=32x−y
x(−3+32x)=32x−(−3+32x)
Simplify
More Steps

Evaluate
32x−(−3+32x)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
32x+3−32x
The sum of two opposites equals 0
More Steps

Evaluate
32x−32x
Collect like terms
(32−32)x
Add the coefficients
0×x
Calculate
0
0+3
Remove 0
3
x(−3+32x)=3
Expand the expression
More Steps

Evaluate
x(−3+32x)
Apply the distributive property
x(−3)+x×32x
Use the commutative property to reorder the terms
−3x+x×32x
Multiply the terms
More Steps

Evaluate
x×32x
Use the commutative property to reorder the terms
32x×x
Multiply the terms
32x2
−3x+32x2
−3x+32x2=3
Move the expression to the left side
−3x+32x2−3=0
Rewrite in standard form
32x2−3x−3=0
Substitute a=32,b=−3 and c=−3 into the quadratic formula x=2a−b±b2−4ac
x=2×323±(−3)2−4×32(−3)
Simplify the expression
x=643±(−3)2−4×32(−3)
Simplify the expression
More Steps

Evaluate
(−3)2−4×32(−3)
Multiply
More Steps

Multiply the terms
4×32(−3)
Rewrite the expression
−4×32×3
Multiply the terms
−384
(−3)2−(−384)
Rewrite the expression
32−(−384)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
32+384
Evaluate the power
9+384
Add the numbers
393
x=643±393
Separate the equation into 2 possible cases
x=643+393x=643−393
Evaluate the logic
x=643+393∪x=643−393
Rearrange the terms
{x=643+393y=−3+32x∪{x=643−393y=−3+32x
Calculate
More Steps

Evaluate
{x=643+393y=−3+32x
Substitute the given value of x into the equation y=−3+32x
y=−3+32×643+393
Calculate
y=2−3+393
Calculate
{x=643+393y=2−3+393
{x=643+393y=2−3+393∪{x=643−393y=−3+32x
Calculate
More Steps

Evaluate
{x=643−393y=−3+32x
Substitute the given value of x into the equation y=−3+32x
y=−3+32×643−393
Calculate
y=−23+393
Calculate
{x=643−393y=−23+393
{x=643+393y=2−3+393∪{x=643−393y=−23+393
Check the solution
More Steps

Check the solution
{643+393×2−3+393=32×643+393−2−3+39332×643+393−2−3+393=3
Simplify
{3=33=3
Evaluate
true
{x=643+393y=2−3+393∪{x=643−393y=−23+393
Check the solution
More Steps

Check the solution
⎩⎨⎧643−393×(−23+393)=32×643−393−(−23+393)32×643−393−(−23+393)=3
Simplify
{3=33=3
Evaluate
true
{x=643+393y=2−3+393∪{x=643−393y=−23+393
Solution
(x1,y1)=(643+393,2−3+393)(x2,y2)=(643−393,−23+393)
Show Solution
