Question
Solve the system of equations
(x1,y1)=(7811+1837,2−11+1837)(x2,y2)=(7811−1837,−211+1837)
Evaluate
{xy=39x−y39x−y=11
Solve the equation for y
More Steps

Evaluate
39x−y=11
Move the expression to the right-hand side and change its sign
−y=11−39x
Change the signs on both sides of the equation
y=−11+39x
{xy=39x−yy=−11+39x
Substitute the given value of y into the equation xy=39x−y
x(−11+39x)=39x−(−11+39x)
Simplify
More Steps

Evaluate
39x−(−11+39x)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
39x+11−39x
The sum of two opposites equals 0
More Steps

Evaluate
39x−39x
Collect like terms
(39−39)x
Add the coefficients
0×x
Calculate
0
0+11
Remove 0
11
x(−11+39x)=11
Expand the expression
More Steps

Evaluate
x(−11+39x)
Apply the distributive property
x(−11)+x×39x
Use the commutative property to reorder the terms
−11x+x×39x
Multiply the terms
More Steps

Evaluate
x×39x
Use the commutative property to reorder the terms
39x×x
Multiply the terms
39x2
−11x+39x2
−11x+39x2=11
Move the expression to the left side
−11x+39x2−11=0
Rewrite in standard form
39x2−11x−11=0
Substitute a=39,b=−11 and c=−11 into the quadratic formula x=2a−b±b2−4ac
x=2×3911±(−11)2−4×39(−11)
Simplify the expression
x=7811±(−11)2−4×39(−11)
Simplify the expression
More Steps

Evaluate
(−11)2−4×39(−11)
Multiply
More Steps

Multiply the terms
4×39(−11)
Rewrite the expression
−4×39×11
Multiply the terms
−1716
(−11)2−(−1716)
Rewrite the expression
112−(−1716)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
112+1716
Evaluate the power
121+1716
Add the numbers
1837
x=7811±1837
Separate the equation into 2 possible cases
x=7811+1837x=7811−1837
Evaluate the logic
x=7811+1837∪x=7811−1837
Rearrange the terms
{x=7811+1837y=−11+39x∪{x=7811−1837y=−11+39x
Calculate
More Steps

Evaluate
{x=7811+1837y=−11+39x
Substitute the given value of x into the equation y=−11+39x
y=−11+39×7811+1837
Calculate
y=2−11+1837
Calculate
{x=7811+1837y=2−11+1837
{x=7811+1837y=2−11+1837∪{x=7811−1837y=−11+39x
Calculate
More Steps

Evaluate
{x=7811−1837y=−11+39x
Substitute the given value of x into the equation y=−11+39x
y=−11+39×7811−1837
Calculate
y=−211+1837
Calculate
{x=7811−1837y=−211+1837
{x=7811+1837y=2−11+1837∪{x=7811−1837y=−211+1837
Check the solution
More Steps

Check the solution
{7811+1837×2−11+1837=39×7811+1837−2−11+183739×7811+1837−2−11+1837=11
Simplify
{11=1111=11
Evaluate
true
{x=7811+1837y=2−11+1837∪{x=7811−1837y=−211+1837
Check the solution
More Steps

Check the solution
⎩⎨⎧7811−1837×(−211+1837)=39×7811−1837−(−211+1837)39×7811−1837−(−211+1837)=11
Simplify
{11=1111=11
Evaluate
true
{x=7811+1837y=2−11+1837∪{x=7811−1837y=−211+1837
Solution
(x1,y1)=(7811+1837,2−11+1837)(x2,y2)=(7811−1837,−211+1837)
Show Solution
