Question
Solve the system of equations
(x1,y1)=(211+137,2−11+137)(x2,y2)=(211−137,−211+137)
Evaluate
{xy=4x−y=11
Solve the equation for x
{xy=4x=11+y
Substitute the given value of x into the equation xy=4
(11+y)y=4
Simplify
y(11+y)=4
Expand the expression
More Steps

Evaluate
y(11+y)
Apply the distributive property
y×11+y×y
Use the commutative property to reorder the terms
11y+y×y
Multiply the terms
11y+y2
11y+y2=4
Move the expression to the left side
11y+y2−4=0
Rewrite in standard form
y2+11y−4=0
Substitute a=1,b=11 and c=−4 into the quadratic formula y=2a−b±b2−4ac
y=2−11±112−4(−4)
Simplify the expression
More Steps

Evaluate
112−4(−4)
Multiply the numbers
More Steps

Evaluate
4(−4)
Multiplying or dividing an odd number of negative terms equals a negative
−4×4
Multiply the numbers
−16
112−(−16)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
112+16
Evaluate the power
121+16
Add the numbers
137
y=2−11±137
Separate the equation into 2 possible cases
y=2−11+137y=2−11−137
Use b−a=−ba=−ba to rewrite the fraction
y=2−11+137y=−211+137
Evaluate the logic
y=2−11+137∪y=−211+137
Rearrange the terms
{x=11+yy=2−11+137∪{x=11+yy=−211+137
Calculate
More Steps

Evaluate
{x=11+yy=2−11+137
Substitute the given value of y into the equation x=11+y
x=11+2−11+137
Calculate
x=211+137
Calculate
{x=211+137y=2−11+137
{x=211+137y=2−11+137∪{x=11+yy=−211+137
Calculate
More Steps

Evaluate
{x=11+yy=−211+137
Substitute the given value of y into the equation x=11+y
x=11−211+137
Calculate
x=211−137
Calculate
{x=211−137y=−211+137
{x=211+137y=2−11+137∪{x=211−137y=−211+137
Check the solution
More Steps

Check the solution
{211+137×2−11+137=4211+137−2−11+137=11
Simplify
{4=411=11
Evaluate
true
{x=211+137y=2−11+137∪{x=211−137y=−211+137
Check the solution
More Steps

Check the solution
⎩⎨⎧211−137×(−211+137)=4211−137−(−211+137)=11
Simplify
{4=411=11
Evaluate
true
{x=211+137y=2−11+137∪{x=211−137y=−211+137
Solution
(x1,y1)=(211+137,2−11+137)(x2,y2)=(211−137,−211+137)
Show Solution
