Question
Solve the system of equations
(x1,y1)=(285+557,2−3+357)(x2,y2)=(285−557,−23+357)
Evaluate
{xy=42x−5y42x−5y=15
Solve the equation for x
More Steps

Evaluate
42x−5y=15
Move the expression to the right-hand side and change its sign
42x=15+5y
Divide both sides
4242x=4215+5y
Divide the numbers
x=4215+5y
{xy=42x−5yx=4215+5y
Substitute the given value of x into the equation xy=42x−5y
4215+5y×y=42×4215+5y−5y
Simplify
More Steps

Evaluate
4215+5y×y
Multiply the terms
42(15+5y)y
Multiply the terms
42y(15+5y)
42y(15+5y)=42×4215+5y−5y
Simplify
More Steps

Evaluate
42×4215+5y−5y
Multiply the terms
More Steps

Multiply the terms
42×4215+5y
Cancel out the common factor 42
1×(15+5y)
Multiply the terms
15+5y
15+5y−5y
The sum of two opposites equals 0
More Steps

Evaluate
5y−5y
Collect like terms
(5−5)y
Add the coefficients
0×y
Calculate
0
15+0
Remove 0
15
42y(15+5y)=15
Cross multiply
y(15+5y)=42×15
Simplify the equation
y(15+5y)=630
Expand the expression
More Steps

Evaluate
y(15+5y)
Apply the distributive property
y×15+y×5y
Use the commutative property to reorder the terms
15y+y×5y
Multiply the terms
More Steps

Evaluate
y×5y
Use the commutative property to reorder the terms
5y×y
Multiply the terms
5y2
15y+5y2
15y+5y2=630
Move the expression to the left side
15y+5y2−630=0
Rewrite in standard form
5y2+15y−630=0
Substitute a=5,b=15 and c=−630 into the quadratic formula y=2a−b±b2−4ac
y=2×5−15±152−4×5(−630)
Simplify the expression
y=10−15±152−4×5(−630)
Simplify the expression
More Steps

Evaluate
152−4×5(−630)
Multiply
More Steps

Multiply the terms
4×5(−630)
Rewrite the expression
−4×5×630
Multiply the terms
−12600
152−(−12600)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
152+12600
Evaluate the power
225+12600
Add the numbers
12825
y=10−15±12825
Simplify the radical expression
More Steps

Evaluate
12825
Write the expression as a product where the root of one of the factors can be evaluated
225×57
Write the number in exponential form with the base of 15
152×57
The root of a product is equal to the product of the roots of each factor
152×57
Reduce the index of the radical and exponent with 2
1557
y=10−15±1557
Separate the equation into 2 possible cases
y=10−15+1557y=10−15−1557
Simplify the expression
More Steps

Evaluate
y=10−15+1557
Divide the terms
More Steps

Evaluate
10−15+1557
Rewrite the expression
105(−3+357)
Cancel out the common factor 5
2−3+357
y=2−3+357
y=2−3+357y=10−15−1557
Simplify the expression
More Steps

Evaluate
y=10−15−1557
Divide the terms
More Steps

Evaluate
10−15−1557
Rewrite the expression
105(−3−357)
Cancel out the common factor 5
2−3−357
Use b−a=−ba=−ba to rewrite the fraction
−23+357
y=−23+357
y=2−3+357y=−23+357
Evaluate the logic
y=2−3+357∪y=−23+357
Rearrange the terms
{x=4215+5yy=2−3+357∪{x=4215+5yy=−23+357
Calculate
More Steps

Evaluate
{x=4215+5yy=2−3+357
Substitute the given value of y into the equation x=4215+5y
x=4215+5×2−3+357
Calculate
x=285+557
Calculate
{x=285+557y=2−3+357
{x=285+557y=2−3+357∪{x=4215+5yy=−23+357
Calculate
More Steps

Evaluate
{x=4215+5yy=−23+357
Substitute the given value of y into the equation x=4215+5y
x=4215+5(−23+357)
Calculate
x=285−557
Calculate
{x=285−557y=−23+357
{x=285+557y=2−3+357∪{x=285−557y=−23+357
Check the solution
More Steps

Check the solution
{285+557×2−3+357=42×285+557−5×2−3+35742×285+557−5×2−3+357=15
Simplify
{15=1515=15
Evaluate
true
{x=285+557y=2−3+357∪{x=285−557y=−23+357
Check the solution
More Steps

Check the solution
⎩⎨⎧285−557×(−23+357)=42×285−557−5(−23+357)42×285−557−5(−23+357)=15
Simplify
{15=1515=15
Evaluate
true
{x=285+557y=2−3+357∪{x=285−557y=−23+357
Solution
(x1,y1)=(285+557,2−3+357)(x2,y2)=(285−557,−23+357)
Show Solution
