Question
Solve the equation
x=−y−8y4
Evaluate
xy=8x−y4
Rewrite the expression
yx=8x−y4
Move the variable to the left side
yx−8x=−y4
Collect like terms by calculating the sum or difference of their coefficients
(y−8)x=−y4
Divide both sides
y−8(y−8)x=y−8−y4
Divide the numbers
x=y−8−y4
Solution
x=−y−8y4
Show Solution

Testing for symmetry
Testing for symmetry about the origin
Testing for symmetry about the x-axis
Testing for symmetry about the y-axis
Not symmetry with respect to the origin
Evaluate
xy=8x−y4
To test if the graph of xy=8x−y4 is symmetry with respect to the origin,substitute -x for x and -y for y
−x(−y)=8(−x)−(−y)4
Multiplying or dividing an even number of negative terms equals a positive
xy=8(−x)−(−y)4
Evaluate
More Steps

Evaluate
8(−x)−(−y)4
Multiply the numbers
−8x−(−y)4
Rewrite the expression
−8x−y4
xy=−8x−y4
Solution
Not symmetry with respect to the origin
Show Solution

Find the first derivative
Find the derivative with respect to x
Find the derivative with respect to y
dxdy=x+4y38−y
Calculate
xy=8x−y4
Take the derivative of both sides
dxd(xy)=dxd(8x−y4)
Calculate the derivative
More Steps

Evaluate
dxd(xy)
Use differentiation rules
dxd(x)×y+x×dxd(y)
Use dxdxn=nxn−1 to find derivative
y+x×dxd(y)
Evaluate the derivative
More Steps

Evaluate
dxd(y)
Use differentiation rules
dyd(y)×dxdy
Use dxdxn=nxn−1 to find derivative
dxdy
y+xdxdy
y+xdxdy=dxd(8x−y4)
Calculate the derivative
More Steps

Evaluate
dxd(8x−y4)
Use differentiation rules
dxd(8x)+dxd(−y4)
Evaluate the derivative
More Steps

Evaluate
dxd(8x)
Use differentiation rule dxd(cf(x))=c×dxd(f(x))
8×dxd(x)
Use dxdxn=nxn−1 to find derivative
8×1
Any expression multiplied by 1 remains the same
8
8+dxd(−y4)
Evaluate the derivative
More Steps

Evaluate
dxd(−y4)
Use differentiation rules
dyd(−y4)×dxdy
Evaluate the derivative
−4y3dxdy
8−4y3dxdy
y+xdxdy=8−4y3dxdy
Move the expression to the left side
y+xdxdy+4y3dxdy=8
Move the expression to the right side
xdxdy+4y3dxdy=8−y
Collect like terms by calculating the sum or difference of their coefficients
(x+4y3)dxdy=8−y
Divide both sides
x+4y3(x+4y3)dxdy=x+4y38−y
Solution
dxdy=x+4y38−y
Show Solution

Find the second derivative
Find the second derivative with respect to x
Find the second derivative with respect to y
dx2d2y=x3+12x2y3+48xy6+64y9−16x+2xy+128y3−4y4−768y2
Calculate
xy=8x−y4
Take the derivative of both sides
dxd(xy)=dxd(8x−y4)
Calculate the derivative
More Steps

Evaluate
dxd(xy)
Use differentiation rules
dxd(x)×y+x×dxd(y)
Use dxdxn=nxn−1 to find derivative
y+x×dxd(y)
Evaluate the derivative
More Steps

Evaluate
dxd(y)
Use differentiation rules
dyd(y)×dxdy
Use dxdxn=nxn−1 to find derivative
dxdy
y+xdxdy
y+xdxdy=dxd(8x−y4)
Calculate the derivative
More Steps

Evaluate
dxd(8x−y4)
Use differentiation rules
dxd(8x)+dxd(−y4)
Evaluate the derivative
More Steps

Evaluate
dxd(8x)
Use differentiation rule dxd(cf(x))=c×dxd(f(x))
8×dxd(x)
Use dxdxn=nxn−1 to find derivative
8×1
Any expression multiplied by 1 remains the same
8
8+dxd(−y4)
Evaluate the derivative
More Steps

Evaluate
dxd(−y4)
Use differentiation rules
dyd(−y4)×dxdy
Evaluate the derivative
−4y3dxdy
8−4y3dxdy
y+xdxdy=8−4y3dxdy
Move the expression to the left side
y+xdxdy+4y3dxdy=8
Move the expression to the right side
xdxdy+4y3dxdy=8−y
Collect like terms by calculating the sum or difference of their coefficients
(x+4y3)dxdy=8−y
Divide both sides
x+4y3(x+4y3)dxdy=x+4y38−y
Divide the numbers
dxdy=x+4y38−y
Take the derivative of both sides
dxd(dxdy)=dxd(x+4y38−y)
Calculate the derivative
dx2d2y=dxd(x+4y38−y)
Use differentiation rules
dx2d2y=(x+4y3)2dxd(8−y)×(x+4y3)−(8−y)×dxd(x+4y3)
Calculate the derivative
More Steps

Evaluate
dxd(8−y)
Use differentiation rules
dxd(8)+dxd(−y)
Use dxd(c)=0 to find derivative
0+dxd(−y)
Evaluate the derivative
0−dxdy
Evaluate
−dxdy
dx2d2y=(x+4y3)2−dxdy×(x+4y3)−(8−y)×dxd(x+4y3)
Calculate the derivative
More Steps

Evaluate
dxd(x+4y3)
Use differentiation rules
dxd(x)+dxd(4y3)
Use dxdxn=nxn−1 to find derivative
1+dxd(4y3)
Evaluate the derivative
1+12y2dxdy
dx2d2y=(x+4y3)2−dxdy×(x+4y3)−(8−y)(1+12y2dxdy)
Calculate
More Steps

Evaluate
−dxdy×(x+4y3)
Apply the distributive property
−dxdy×x−dxdy×4y3
Use the commutative property to reorder the terms
−xdxdy−dxdy×4y3
Multiply the terms
−xdxdy−4y3dxdy
dx2d2y=(x+4y3)2−xdxdy−4y3dxdy−(8−y)(1+12y2dxdy)
Calculate
More Steps

Evaluate
(8−y)(1+12y2dxdy)
Use the the distributive property to expand the expression
(8−y)×1+(8−y)×12y2dxdy
Any expression multiplied by 1 remains the same
8−y+(8−y)×12y2dxdy
Multiply the terms
8−y+96y2dxdy−12y3dxdy
dx2d2y=(x+4y3)2−xdxdy−4y3dxdy−(8−y+96y2dxdy−12y3dxdy)
Calculate
More Steps

Calculate
−xdxdy−4y3dxdy−(8−y+96y2dxdy−12y3dxdy)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−xdxdy−4y3dxdy−8+y−96y2dxdy+12y3dxdy
Add the terms
−xdxdy+8y3dxdy−8+y−96y2dxdy
dx2d2y=(x+4y3)2−xdxdy+8y3dxdy−8+y−96y2dxdy
Use equation dxdy=x+4y38−y to substitute
dx2d2y=(x+4y3)2−x×x+4y38−y+8y3×x+4y38−y−8+y−96y2×x+4y38−y
Solution
More Steps

Calculate
(x+4y3)2−x×x+4y38−y+8y3×x+4y38−y−8+y−96y2×x+4y38−y
Multiply the terms
(x+4y3)2−x+4y3x(8−y)+8y3×x+4y38−y−8+y−96y2×x+4y38−y
Multiply the terms
(x+4y3)2−x+4y3x(8−y)+x+4y38y3(8−y)−8+y−96y2×x+4y38−y
Multiply the terms
(x+4y3)2−x+4y3x(8−y)+x+4y38y3(8−y)−8+y−x+4y396y2(8−y)
Calculate the sum or difference
More Steps

Evaluate
−x+4y3x(8−y)+x+4y38y3(8−y)−8+y−x+4y396y2(8−y)
Reduce fractions to a common denominator
−x+4y3x(8−y)+x+4y38y3(8−y)−x+4y38(x+4y3)+x+4y3y(x+4y3)−x+4y396y2(8−y)
Write all numerators above the common denominator
x+4y3−x(8−y)+8y3(8−y)−8(x+4y3)+y(x+4y3)−96y2(8−y)
Multiply the terms
x+4y3−(8x−xy)+8y3(8−y)−8(x+4y3)+y(x+4y3)−96y2(8−y)
Multiply the terms
x+4y3−(8x−xy)+64y3−8y4−8(x+4y3)+y(x+4y3)−96y2(8−y)
Multiply the terms
x+4y3−(8x−xy)+64y3−8y4−(8x+32y3)+y(x+4y3)−96y2(8−y)
Multiply the terms
x+4y3−(8x−xy)+64y3−8y4−(8x+32y3)+yx+4y4−96y2(8−y)
Multiply the terms
x+4y3−(8x−xy)+64y3−8y4−(8x+32y3)+yx+4y4−(768y2−96y3)
Calculate the sum or difference
x+4y3−16x+2xy+128y3−4y4−768y2
(x+4y3)2x+4y3−16x+2xy+128y3−4y4−768y2
Multiply by the reciprocal
x+4y3−16x+2xy+128y3−4y4−768y2×(x+4y3)21
Multiply the terms
(x+4y3)(x+4y3)2−16x+2xy+128y3−4y4−768y2
Multiply the terms
(x+4y3)3−16x+2xy+128y3−4y4−768y2
Expand the expression
More Steps

Evaluate
(x+4y3)3
Use (a+b)3=a3+3a2b+3ab2+b3 to expand the expression
x3+3x2×4y3+3x(4y3)2+(4y3)3
Calculate
x3+12x2y3+48xy6+64y9
x3+12x2y3+48xy6+64y9−16x+2xy+128y3−4y4−768y2
dx2d2y=x3+12x2y3+48xy6+64y9−16x+2xy+128y3−4y4−768y2
Show Solution
