Question
Solve the system of equations
(x1,y1)=(61+13,2−3+313)(x2,y2)=(61−13,−23+313)
Evaluate
{xy=9x−y9x−y=3
Solve the equation for y
More Steps

Evaluate
9x−y=3
Move the expression to the right-hand side and change its sign
−y=3−9x
Change the signs on both sides of the equation
y=−3+9x
{xy=9x−yy=−3+9x
Substitute the given value of y into the equation xy=9x−y
x(−3+9x)=9x−(−3+9x)
Simplify
More Steps

Evaluate
9x−(−3+9x)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
9x+3−9x
The sum of two opposites equals 0
More Steps

Evaluate
9x−9x
Collect like terms
(9−9)x
Add the coefficients
0×x
Calculate
0
0+3
Remove 0
3
x(−3+9x)=3
Expand the expression
More Steps

Evaluate
x(−3+9x)
Apply the distributive property
x(−3)+x×9x
Use the commutative property to reorder the terms
−3x+x×9x
Multiply the terms
More Steps

Evaluate
x×9x
Use the commutative property to reorder the terms
9x×x
Multiply the terms
9x2
−3x+9x2
−3x+9x2=3
Move the expression to the left side
−3x+9x2−3=0
Rewrite in standard form
9x2−3x−3=0
Substitute a=9,b=−3 and c=−3 into the quadratic formula x=2a−b±b2−4ac
x=2×93±(−3)2−4×9(−3)
Simplify the expression
x=183±(−3)2−4×9(−3)
Simplify the expression
More Steps

Evaluate
(−3)2−4×9(−3)
Multiply
More Steps

Multiply the terms
4×9(−3)
Rewrite the expression
−4×9×3
Multiply the terms
−108
(−3)2−(−108)
Rewrite the expression
32−(−108)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
32+108
Evaluate the power
9+108
Add the numbers
117
x=183±117
Simplify the radical expression
More Steps

Evaluate
117
Write the expression as a product where the root of one of the factors can be evaluated
9×13
Write the number in exponential form with the base of 3
32×13
The root of a product is equal to the product of the roots of each factor
32×13
Reduce the index of the radical and exponent with 2
313
x=183±313
Separate the equation into 2 possible cases
x=183+313x=183−313
Simplify the expression
More Steps

Evaluate
x=183+313
Divide the terms
More Steps

Evaluate
183+313
Rewrite the expression
183(1+13)
Cancel out the common factor 3
61+13
x=61+13
x=61+13x=183−313
Simplify the expression
More Steps

Evaluate
x=183−313
Divide the terms
More Steps

Evaluate
183−313
Rewrite the expression
183(1−13)
Cancel out the common factor 3
61−13
x=61−13
x=61+13x=61−13
Evaluate the logic
x=61+13∪x=61−13
Rearrange the terms
{x=61+13y=−3+9x∪{x=61−13y=−3+9x
Calculate
More Steps

Evaluate
{x=61+13y=−3+9x
Substitute the given value of x into the equation y=−3+9x
y=−3+9×61+13
Calculate
y=2−3+313
Calculate
{x=61+13y=2−3+313
{x=61+13y=2−3+313∪{x=61−13y=−3+9x
Calculate
More Steps

Evaluate
{x=61−13y=−3+9x
Substitute the given value of x into the equation y=−3+9x
y=−3+9×61−13
Calculate
y=−23+313
Calculate
{x=61−13y=−23+313
{x=61+13y=2−3+313∪{x=61−13y=−23+313
Check the solution
More Steps

Check the solution
{61+13×2−3+313=9×61+13−2−3+3139×61+13−2−3+313=3
Simplify
{3=33=3
Evaluate
true
{x=61+13y=2−3+313∪{x=61−13y=−23+313
Check the solution
More Steps

Check the solution
⎩⎨⎧61−13×(−23+313)=9×61−13−(−23+313)9×61−13−(−23+313)=3
Simplify
{3=33=3
Evaluate
true
{x=61+13y=2−3+313∪{x=61−13y=−23+313
Solution
(x1,y1)=(61+13,2−3+313)(x2,y2)=(61−13,−23+313)
Show Solution
