Question
Solve the equation(The real numbers system)
x∈/R
Alternative Form
No real solution
Evaluate
12x×6x−6=21×8x−8
Multiply the terms
More Steps

Multiply the terms
12x×6x−6
Multiply the terms
12×6x(x−6)
Multiply the terms
72x(x−6)
72x(x−6)=21×8x−8
Multiply the terms
More Steps

Multiply the terms
21×8x−8
Multiply the terms
2×8x−8
Multiply the terms
16x−8
72x(x−6)=16x−8
Rewrite the expression
721x2−121x=16x−8
Rewrite the expression
721x2−121x=161x−21
Move the expression to the left side
721x2−487x+21=0
Multiply both sides
144(721x2−487x+21)=144×0
Calculate
2x2−21x+72=0
Substitute a=2,b=−21 and c=72 into the quadratic formula x=2a−b±b2−4ac
x=2×221±(−21)2−4×2×72
Simplify the expression
x=421±(−21)2−4×2×72
Simplify the expression
More Steps

Evaluate
(−21)2−4×2×72
Multiply the terms
More Steps

Multiply the terms
4×2×72
Multiply the terms
8×72
Multiply the numbers
576
(−21)2−576
Rewrite the expression
212−576
Evaluate the power
441−576
Subtract the numbers
−135
x=421±−135
Solution
x∈/R
Alternative Form
No real solution
Show Solution

Solve the equation(The complex numbers system)
Solve using the quadratic formula in the complex numbers system
Solve using the PQ formula in the complex numbers system
x1=421−4315i,x2=421+4315i
Alternative Form
x1≈5.25−2.904738i,x2≈5.25+2.904738i
Evaluate
12x×6x−6=21×8x−8
Multiply the terms
More Steps

Multiply the terms
12x×6x−6
Multiply the terms
12×6x(x−6)
Multiply the terms
72x(x−6)
72x(x−6)=21×8x−8
Multiply the terms
More Steps

Multiply the terms
21×8x−8
Multiply the terms
2×8x−8
Multiply the terms
16x−8
72x(x−6)=16x−8
Rewrite the expression
721x2−121x=16x−8
Rewrite the expression
721x2−121x=161x−21
Move the expression to the left side
721x2−487x+21=0
Multiply both sides
144(721x2−487x+21)=144×0
Calculate
2x2−21x+72=0
Substitute a=2,b=−21 and c=72 into the quadratic formula x=2a−b±b2−4ac
x=2×221±(−21)2−4×2×72
Simplify the expression
x=421±(−21)2−4×2×72
Simplify the expression
More Steps

Evaluate
(−21)2−4×2×72
Multiply the terms
More Steps

Multiply the terms
4×2×72
Multiply the terms
8×72
Multiply the numbers
576
(−21)2−576
Rewrite the expression
212−576
Evaluate the power
441−576
Subtract the numbers
−135
x=421±−135
Simplify the radical expression
More Steps

Evaluate
−135
Evaluate the power
135×−1
Evaluate the power
135×i
Evaluate the power
More Steps

Evaluate
135
Write the expression as a product where the root of one of the factors can be evaluated
9×15
Write the number in exponential form with the base of 3
32×15
The root of a product is equal to the product of the roots of each factor
32×15
Reduce the index of the radical and exponent with 2
315
315×i
x=421±315×i
Separate the equation into 2 possible cases
x=421+315×ix=421−315×i
Simplify the expression
x=421+4315ix=421−315×i
Simplify the expression
x=421+4315ix=421−4315i
Solution
x1=421−4315i,x2=421+4315i
Alternative Form
x1≈5.25−2.904738i,x2≈5.25+2.904738i
Show Solution
