Question
Solve the equation(The real numbers system)
x∈/R
Alternative Form
No real solution
Evaluate
4x×23x−2=2x−3
Multiply the terms
More Steps

Multiply the terms
4x×23x−2
Multiply the terms
4×2x(3x−2)
Multiply the terms
8x(3x−2)
8x(3x−2)=2x−3
Rewrite the expression
83x2−41x=2x−3
Rewrite the expression
83x2−41x=21x−23
Move the expression to the left side
83x2−43x+23=0
Multiply both sides
8(83x2−43x+23)=8×0
Calculate
3x2−6x+12=0
Substitute a=3,b=−6 and c=12 into the quadratic formula x=2a−b±b2−4ac
x=2×36±(−6)2−4×3×12
Simplify the expression
x=66±(−6)2−4×3×12
Simplify the expression
More Steps

Evaluate
(−6)2−4×3×12
Multiply the terms
More Steps

Multiply the terms
4×3×12
Multiply the terms
12×12
Multiply the numbers
144
(−6)2−144
Rewrite the expression
62−144
Evaluate the power
36−144
Subtract the numbers
−108
x=66±−108
Solution
x∈/R
Alternative Form
No real solution
Show Solution

Solve the equation(The complex numbers system)
Solve using the quadratic formula in the complex numbers system
Solve by completing the square in the complex numbers system
Solve using the PQ formula in the complex numbers system
x1=1−3×i,x2=1+3×i
Alternative Form
x1≈1−1.732051i,x2≈1+1.732051i
Evaluate
4x×23x−2=2x−3
Multiply the terms
More Steps

Multiply the terms
4x×23x−2
Multiply the terms
4×2x(3x−2)
Multiply the terms
8x(3x−2)
8x(3x−2)=2x−3
Rewrite the expression
83x2−41x=2x−3
Rewrite the expression
83x2−41x=21x−23
Move the expression to the left side
83x2−43x+23=0
Multiply both sides
8(83x2−43x+23)=8×0
Calculate
3x2−6x+12=0
Substitute a=3,b=−6 and c=12 into the quadratic formula x=2a−b±b2−4ac
x=2×36±(−6)2−4×3×12
Simplify the expression
x=66±(−6)2−4×3×12
Simplify the expression
More Steps

Evaluate
(−6)2−4×3×12
Multiply the terms
More Steps

Multiply the terms
4×3×12
Multiply the terms
12×12
Multiply the numbers
144
(−6)2−144
Rewrite the expression
62−144
Evaluate the power
36−144
Subtract the numbers
−108
x=66±−108
Simplify the radical expression
More Steps

Evaluate
−108
Evaluate the power
108×−1
Evaluate the power
108×i
Evaluate the power
More Steps

Evaluate
108
Write the expression as a product where the root of one of the factors can be evaluated
36×3
Write the number in exponential form with the base of 6
62×3
The root of a product is equal to the product of the roots of each factor
62×3
Reduce the index of the radical and exponent with 2
63
63×i
x=66±63×i
Separate the equation into 2 possible cases
x=66+63×ix=66−63×i
Simplify the expression
More Steps

Evaluate
x=66+63×i
Divide the terms
More Steps

Evaluate
66+63×i
Rewrite the expression
66(1+3×i)
Reduce the fraction
1+3×i
x=1+3×i
x=1+3×ix=66−63×i
Simplify the expression
More Steps

Evaluate
x=66−63×i
Divide the terms
More Steps

Evaluate
66−63×i
Rewrite the expression
66(1−3×i)
Reduce the fraction
1−3×i
x=1−3×i
x=1+3×ix=1−3×i
Solution
x1=1−3×i,x2=1+3×i
Alternative Form
x1≈1−1.732051i,x2≈1+1.732051i
Show Solution
