Question
Solve the equation
x1=243−1763,x2=243+1763
Alternative Form
x1≈0.505953,x2≈42.494047
Evaluate
43xx−22=x−23
Simplify
More Steps

Evaluate
43xx−22
Divide the terms
43xx−1
Multiply the terms
More Steps

Multiply the terms
43xx
Multiply the terms
43x×x
Multiply the terms
43x2
43x2−1
43x2−1=x−23
Multiply both sides of the equation by LCD
(43x2−1)×86=(x−23)×86
Simplify the equation
More Steps

Evaluate
(43x2−1)×86
Apply the distributive property
43x2×86−86
Simplify
x2×2−86
Use the commutative property to reorder the terms
2x2−86
2x2−86=(x−23)×86
Simplify the equation
More Steps

Evaluate
(x−23)×86
Apply the distributive property
x×86−23×86
Simplify
x×86−3×43
Use the commutative property to reorder the terms
86x−3×43
Multiply the numbers
86x−129
2x2−86=86x−129
Move the expression to the left side
2x2−86−(86x−129)=0
Subtract the terms
More Steps

Evaluate
2x2−86−(86x−129)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
2x2−86−86x+129
Add the numbers
2x2+43−86x
2x2+43−86x=0
Rewrite in standard form
2x2−86x+43=0
Substitute a=2,b=−86 and c=43 into the quadratic formula x=2a−b±b2−4ac
x=2×286±(−86)2−4×2×43
Simplify the expression
x=486±(−86)2−4×2×43
Simplify the expression
More Steps

Evaluate
(−86)2−4×2×43
Multiply the terms
More Steps

Multiply the terms
4×2×43
Multiply the terms
8×43
Multiply the numbers
344
(−86)2−344
Rewrite the expression
862−344
Evaluate the power
7396−344
Subtract the numbers
7052
x=486±7052
Simplify the radical expression
More Steps

Evaluate
7052
Write the expression as a product where the root of one of the factors can be evaluated
4×1763
Write the number in exponential form with the base of 2
22×1763
The root of a product is equal to the product of the roots of each factor
22×1763
Reduce the index of the radical and exponent with 2
21763
x=486±21763
Separate the equation into 2 possible cases
x=486+21763x=486−21763
Simplify the expression
More Steps

Evaluate
x=486+21763
Divide the terms
More Steps

Evaluate
486+21763
Rewrite the expression
42(43+1763)
Cancel out the common factor 2
243+1763
x=243+1763
x=243+1763x=486−21763
Simplify the expression
More Steps

Evaluate
x=486−21763
Divide the terms
More Steps

Evaluate
486−21763
Rewrite the expression
42(43−1763)
Cancel out the common factor 2
243−1763
x=243−1763
x=243+1763x=243−1763
Solution
x1=243−1763,x2=243+1763
Alternative Form
x1≈0.505953,x2≈42.494047
Show Solution
