Question
Solve the equation
x=124365
Alternative Form
x≈2.943548
Evaluate
5x−2=20(5×4x−3)
Remove the parentheses
5x−2=20×5×4x−3
Multiply
More Steps

Evaluate
20×5×4x−3
Multiply the terms
100×4x−3
Cancel out the common factor 4
25(x−3)
5x−2=25(x−3)
Multiply both sides of the equation by LCD
(5x−2)×5=25(x−3)×5
Simplify the equation
More Steps

Evaluate
(5x−2)×5
Apply the distributive property
5x×5−2×5
Simplify
x−2×5
Multiply the numbers
x−10
x−10=25(x−3)×5
Simplify the equation
More Steps

Evaluate
25(x−3)×5
Multiply the terms
125(x−3)
Apply the distributive property
125x−125×3
Multiply the numbers
125x−375
x−10=125x−375
Move the expression to the left side
x−10−125x=−375
Move the expression to the right side
x−125x=−375+10
Add and subtract
More Steps

Evaluate
x−125x
Collect like terms by calculating the sum or difference of their coefficients
(1−125)x
Subtract the numbers
−124x
−124x=−375+10
Add and subtract
−124x=−365
Change the signs on both sides of the equation
124x=365
Divide both sides
124124x=124365
Solution
x=124365
Alternative Form
x≈2.943548
Show Solution

Rewrite the equation
124x=365
Evaluate
5x−2=20(5×4x−3)
Evaluate
More Steps

Evaluate
20(5×4x−3)
Remove the parentheses
20×5×4x−3
Multiply the terms
100×4x−3
Cancel out the common factor 4
25(x−3)
5x−2=25(x−3)
Rewrite the expression
51x−2=25(x−3)
Multiply
More Steps

Evaluate
25(x−3)
Apply the distributive property
25x−25×3
Multiply the numbers
25x−75
51x−2=25x−75
Multiply both sides of the equation by LCD
x−10=125x−375
Move the variable to the left side
−124x−10=−375
Move the constant to the right side
−124x=−365
Solution
124x=365
Show Solution
