Question
Solve the inequality
Solve the inequality by testing the values in the interval
Solve for x
−42+12<x<42+12
Alternative Form
x∈(−42+12,42+12)
Evaluate
x÷(−8)x+2>16−3x
Simplify
More Steps

Evaluate
x÷(−8)x+2
Divide the terms
More Steps

Evaluate
x÷(−8)
Rewrite the expression
−8x
Use b−a=−ba=−ba to rewrite the fraction
−8x
−8xx+2
Multiply the terms
More Steps

Multiply the terms
−8xx
Multiply the terms
−8x×x
Multiply the terms
−8x2
−8x2+2
−8x2+2>16−3x
Multiply both sides of the inequality by 8
(−8x2+2)×8>(16−3x)×8
Multiply the terms
More Steps

Multiply the terms
(−8x2+2)×8
Apply the distributive property
−8x2×8+2×8
Reduce the fraction
−x2+2×8
Multiply the terms
−x2+16
−x2+16>(16−3x)×8
Multiply the terms
More Steps

Multiply the terms
(16−3x)×8
Apply the distributive property
16×8−3x×8
Multiply the terms
128−24x
−x2+16>128−24x
Move the expression to the left side
−x2+16−(128−24x)>0
Calculate the sum or difference
More Steps

Evaluate
−x2+16−(128−24x)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−x2+16−128+24x
Subtract the numbers
−x2−112+24x
−x2−112+24x>0
Rewrite the expression
−x2−112+24x=0
Add or subtract both sides
−x2+24x=112
Divide both sides
−1−x2+24x=−1112
Evaluate
x2−24x=−112
Add the same value to both sides
x2−24x+144=−112+144
Simplify the expression
(x−12)2=32
Take the root of both sides of the equation and remember to use both positive and negative roots
x−12=±32
Simplify the expression
x−12=±42
Separate the equation into 2 possible cases
x−12=42x−12=−42
Move the constant to the right-hand side and change its sign
x=42+12x−12=−42
Move the constant to the right-hand side and change its sign
x=42+12x=−42+12
Determine the test intervals using the critical values
x<−42+12−42+12<x<42+12x>42+12
Choose a value form each interval
x1=5x2=12x3=19
To determine if x<−42+12 is the solution to the inequality,test if the chosen value x=5 satisfies the initial inequality
More Steps

Evaluate
−52+16>128−24×5
Add the numbers
More Steps

Evaluate
−52+16
Evaluate the power
−25+16
Add the numbers
−9
−9>128−24×5
Simplify
More Steps

Evaluate
128−24×5
Multiply the numbers
128−120
Subtract the numbers
8
−9>8
Check the inequality
false
x<−42+12 is not a solutionx2=12x3=19
To determine if −42+12<x<42+12 is the solution to the inequality,test if the chosen value x=12 satisfies the initial inequality
More Steps

Evaluate
−122+16>128−24×12
Add the numbers
More Steps

Evaluate
−122+16
Evaluate the power
−144+16
Add the numbers
−128
−128>128−24×12
Simplify
More Steps

Evaluate
128−24×12
Multiply the numbers
128−288
Subtract the numbers
−160
−128>−160
Check the inequality
true
x<−42+12 is not a solution−42+12<x<42+12 is the solutionx3=19
To determine if x>42+12 is the solution to the inequality,test if the chosen value x=19 satisfies the initial inequality
More Steps

Evaluate
−192+16>128−24×19
Add the numbers
More Steps

Evaluate
−192+16
Evaluate the power
−361+16
Add the numbers
−345
−345>128−24×19
Simplify
More Steps

Evaluate
128−24×19
Multiply the numbers
128−456
Subtract the numbers
−328
−345>−328
Check the inequality
false
x<−42+12 is not a solution−42+12<x<42+12 is the solutionx>42+12 is not a solution
Solution
−42+12<x<42+12
Alternative Form
x∈(−42+12,42+12)
Show Solution
