Question Function Find the inverse Find the domain Find the t-intercept/zero Load more f−1(t)=2arcsin(32t) Evaluate x=3(cos(t)sin(t))Simplify More Steps Evaluate 3(cos(t)sin(t))Remove the parentheses 3cos(t)sin(t)Transform the expression 23sin(2t) x=23sin(2t)Interchange t and y t=23sin(2y)Swap the sides of the equation 23sin(2y)=tMultiply both sides of the equation by 32 23sin(2y)×32=t×32Calculate sin(2y)=t×32Calculate sin(2y)=32tUse the inverse trigonometric function 2y=arcsin(32t)Divide both sides 22y=2arcsin(32t)Divide the numbers y=2arcsin(32t)Solution f−1(t)=2arcsin(32t) Show Solution Solve the equation Solve for x Solve for t x=23sin(2t) Evaluate x=3(cos(t)sin(t))Solution More Steps Evaluate 3(cos(t)sin(t))Remove the parentheses 3cos(t)sin(t)Transform the expression 23sin(2t) x=23sin(2t) Show Solution Graph