Question Function Find the domain Determine if even, odd or neither y∈R Evaluate x=3y×1Separate the function into parts to determine the domain of each part 3ySolution y∈R Show Solution Solve the equation Solve for x Solve for y x=3y Evaluate x=3y×1Solution x=3y Show Solution Rewrite the equation r=0θ=arctan(31)+kπ,k∈Z Evaluate x=3y×1Simplify x=3yMove the expression to the left side x−3y=0To convert the equation to polar coordinates,substitute x for rcos(θ) and y for rsin(θ) cos(θ)×r−3sin(θ)×r=0Factor the expression (cos(θ)−3sin(θ))r=0Separate into possible cases r=0cos(θ)−3sin(θ)=0Solution More Steps Evaluate cos(θ)−3sin(θ)=0Move the expression to the right side −3sin(θ)=0−cos(θ)Subtract the terms −3sin(θ)=−cos(θ)Divide both sides cos(θ)−3sin(θ)=−1Divide the terms More Steps Evaluate cos(θ)−3sin(θ)Use b−a=−ba=−ba to rewrite the fraction −cos(θ)3sin(θ)Rewrite the expression −3cos−1(θ)sin(θ)Rewrite the expression −3tan(θ) −3tan(θ)=−1Multiply both sides of the equation by −31 −3tan(θ)(−31)=−(−31)Calculate tan(θ)=−(−31)Multiplying or dividing an even number of negative terms equals a positive tan(θ)=31Use the inverse trigonometric function θ=arctan(31)Add the period of kπ,k∈Z to find all solutions θ=arctan(31)+kπ,k∈Z r=0θ=arctan(31)+kπ,k∈Z Show Solution Graph