Question Function Find the domain Determine if even, odd or neither y∈R Evaluate x=4y×8Separate the function into parts to determine the domain of each part 32ySolution y∈R Show Solution Solve the equation Solve for x Solve for y x=32y Evaluate x=4y×8Solution x=32y Show Solution Rewrite the equation r=0θ=arctan(321)+kπ,k∈Z Evaluate x=4y×8Simplify x=32yMove the expression to the left side x−32y=0To convert the equation to polar coordinates,substitute x for rcos(θ) and y for rsin(θ) cos(θ)×r−32sin(θ)×r=0Factor the expression (cos(θ)−32sin(θ))r=0Separate into possible cases r=0cos(θ)−32sin(θ)=0Solution More Steps Evaluate cos(θ)−32sin(θ)=0Move the expression to the right side −32sin(θ)=0−cos(θ)Subtract the terms −32sin(θ)=−cos(θ)Divide both sides cos(θ)−32sin(θ)=−1Divide the terms More Steps Evaluate cos(θ)−32sin(θ)Use b−a=−ba=−ba to rewrite the fraction −cos(θ)32sin(θ)Rewrite the expression −32cos−1(θ)sin(θ)Rewrite the expression −32tan(θ) −32tan(θ)=−1Multiply both sides of the equation by −321 −32tan(θ)(−321)=−(−321)Calculate tan(θ)=−(−321)Multiplying or dividing an even number of negative terms equals a positive tan(θ)=321Use the inverse trigonometric function θ=arctan(321)Add the period of kπ,k∈Z to find all solutions θ=arctan(321)+kπ,k∈Z r=0θ=arctan(321)+kπ,k∈Z Show Solution Graph