Question
Solve the equation
y=x−12015(x−1)2014x2017−2(x−1)2014+(x−1)2014x
Evaluate
x2017−1=(x−1)(y2015−1)
Swap the sides of the equation
(x−1)(y2015−1)=x2017−1
Divide both sides
x−1(x−1)(y2015−1)=x−1x2017−1
Divide the numbers
y2015−1=x−1x2017−1
Move the constant to the right side
y2015=x−1x2017−1+1
Add the terms
More Steps

Evaluate
x−1x2017−1+1
Reduce fractions to a common denominator
x−1x2017−1+x−1x−1
Write all numerators above the common denominator
x−1x2017−1+x−1
Subtract the numbers
x−1x2017−2+x
y2015=x−1x2017−2+x
Take the 2015-th root on both sides of the equation
2015y2015=2015x−1x2017−2+x
Calculate
y=2015x−1x2017−2+x
Simplify the root
More Steps

Evaluate
2015x−1x2017−2+x
To take a root of a fraction,take the root of the numerator and denominator separately
2015x−12015x2017−2+x
Multiply by the Conjugate
2015x−1×2015(x−1)20142015x2017−2+x×2015(x−1)2014
Calculate
x−12015x2017−2+x×2015(x−1)2014
Calculate
More Steps

Evaluate
2015x2017−2+x×2015(x−1)2014
The product of roots with the same index is equal to the root of the product
2015(x2017−2+x)(x−1)2014
Calculate the product
2015(x−1)2014(x2017−2+x)
x−12015(x−1)2014(x2017−2+x)
y=x−12015(x−1)2014(x2017−2+x)
Solution
More Steps

Evaluate
2015(x−1)2014(x2017−2+x)
Rewrite the expression
2015(x−1)2014×2015x2017−2+x
Simplify the root
2015(x−1)2014x2017−2(x−1)2014+(x−1)2014x
y=x−12015(x−1)2014x2017−2(x−1)2014+(x−1)2014x
Show Solution

Testing for symmetry
Testing for symmetry about the origin
Testing for symmetry about the x-axis
Testing for symmetry about the y-axis
Not symmetry with respect to the origin
Evaluate
x2017−1=(x−1)(y2015−1)
To test if the graph of x2017−1=(x−1)(y2015−1) is symmetry with respect to the origin,substitute -x for x and -y for y
(−x)2017−1=(−x−1)((−y)2015−1)
Evaluate
−x2017−1=(−x−1)((−y)2015−1)
Evaluate
−x2017−1=(−x−1)(−y2015−1)
Solution
Not symmetry with respect to the origin
Show Solution

Find the first derivative
Find the derivative with respect to x
Find the derivative with respect to y
dxdy=2015xy2014−2015y20142017x2016−y2015+1
Calculate
x2017−1=(x−1)(y2015−1)
Take the derivative of both sides
dxd(x2017−1)=dxd((x−1)(y2015−1))
Calculate the derivative
More Steps

Evaluate
dxd(x2017−1)
Use differentiation rules
dxd(x2017)+dxd(−1)
Use dxdxn=nxn−1 to find derivative
2017x2016+dxd(−1)
Use dxd(c)=0 to find derivative
2017x2016+0
Evaluate
2017x2016
2017x2016=dxd((x−1)(y2015−1))
Calculate the derivative
More Steps

Evaluate
dxd((x−1)(y2015−1))
Use differentiation rules
dxd(x−1)×(y2015−1)+(x−1)×dxd(y2015−1)
Evaluate the derivative
More Steps

Evaluate
dxd(x−1)
Use differentiation rules
dxd(x)+dxd(−1)
Use dxdxn=nxn−1 to find derivative
1+dxd(−1)
Use dxd(c)=0 to find derivative
1+0
Evaluate
1
y2015−1+(x−1)×dxd(y2015−1)
Evaluate the derivative
More Steps

Evaluate
dxd(y2015−1)
Use differentiation rules
dxd(y2015)+dxd(−1)
Evaluate the derivative
2015y2014dxdy+dxd(−1)
Use dxd(c)=0 to find derivative
2015y2014dxdy+0
Evaluate
2015y2014dxdy
y2015−1+2015xy2014dxdy−2015y2014dxdy
2017x2016=y2015−1+2015xy2014dxdy−2015y2014dxdy
Swap the sides of the equation
y2015−1+2015xy2014dxdy−2015y2014dxdy=2017x2016
Collect like terms by calculating the sum or difference of their coefficients
y2015−1+(2015xy2014−2015y2014)dxdy=2017x2016
Move the constant to the right side
(2015xy2014−2015y2014)dxdy=2017x2016−(y2015−1)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
(2015xy2014−2015y2014)dxdy=2017x2016−y2015+1
Divide both sides
2015xy2014−2015y2014(2015xy2014−2015y2014)dxdy=2015xy2014−2015y20142017x2016−y2015+1
Solution
dxdy=2015xy2014−2015y20142017x2016−y2015+1
Show Solution
