Question
Find the roots
x1=15−449,x2=15+449
Alternative Form
x1≈−6.18962,x2≈36.18962
Evaluate
x2−30x−224
To find the roots of the expression,set the expression equal to 0
x2−30x−224=0
Substitute a=1,b=−30 and c=−224 into the quadratic formula x=2a−b±b2−4ac
x=230±(−30)2−4(−224)
Simplify the expression
More Steps

Evaluate
(−30)2−4(−224)
Multiply the numbers
More Steps

Evaluate
4(−224)
Multiplying or dividing an odd number of negative terms equals a negative
−4×224
Multiply the numbers
−896
(−30)2−(−896)
Rewrite the expression
302−(−896)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
302+896
Evaluate the power
900+896
Add the numbers
1796
x=230±1796
Simplify the radical expression
More Steps

Evaluate
1796
Write the expression as a product where the root of one of the factors can be evaluated
4×449
Write the number in exponential form with the base of 2
22×449
The root of a product is equal to the product of the roots of each factor
22×449
Reduce the index of the radical and exponent with 2
2449
x=230±2449
Separate the equation into 2 possible cases
x=230+2449x=230−2449
Simplify the expression
More Steps

Evaluate
x=230+2449
Divide the terms
More Steps

Evaluate
230+2449
Rewrite the expression
22(15+449)
Reduce the fraction
15+449
x=15+449
x=15+449x=230−2449
Simplify the expression
More Steps

Evaluate
x=230−2449
Divide the terms
More Steps

Evaluate
230−2449
Rewrite the expression
22(15−449)
Reduce the fraction
15−449
x=15−449
x=15+449x=15−449
Solution
x1=15−449,x2=15+449
Alternative Form
x1≈−6.18962,x2≈36.18962
Show Solution
