Question
Simplify the expression
−58x3y4−24x2y5+18xy6
Evaluate
x2×x×5y2(3y−2x)(2×x22x−3y)y2
Remove the parentheses
x2×x×5y2(3y−2x)×2×x22x−3y×y2
Multiply the terms with the same base by adding their exponents
x2+1×5y2(3y−2x)×2×x22x−3y×y2
Add the numbers
x3×5y2(3y−2x)×2×x22x−3y×y2
Multiply the terms
More Steps

Evaluate
x3×5y2×2×x22x−3y×y2
Multiply the terms
5x3y2×2×x22x−3y×y2
Multiply the terms
More Steps

Multiply the terms
5x3y2×2
Multiply the terms
5x3y2×2
Use the commutative property to reorder the terms
52x3y2
52x3y2×x22x−3y×y2
Multiply the terms
More Steps

Multiply the terms
52x3y2×x22x−3y
Cancel out the common factor x2
52xy2(2x−3y)
Multiply the terms
52xy2(2x−3y)
52xy2(2x−3y)y2
Multiply the terms
52xy2(2x−3y)y2
Multiply the terms
More Steps

Evaluate
y2×y2
Use the product rule an×am=an+m to simplify the expression
y2+2
Add the numbers
y4
52xy4(2x−3y)
52xy4(2x−3y)(3y−2x)
Multiply the terms
52xy4(2x−3y)(3y−2x)
Multiply the terms
More Steps

Evaluate
2xy4(2x−3y)(3y−2x)
Multiply the terms
2xy4(−(2x−3y)2)
Use the commutative property to reorder the terms
xy4(−2)(2x−3y)2
Use the commutative property to reorder the terms
−2xy4(2x−3y)2
5−2xy4(2x−3y)2
Use b−a=−ba=−ba to rewrite the fraction
−52xy4(2x−3y)2
Solution
More Steps

Evaluate
2xy4(2x−3y)2
Expand the expression
More Steps

Evaluate
(2x−3y)2
Use (a−b)2=a2−2ab+b2 to expand the expression
(2x)2−2×2x×3y+(3y)2
Calculate
4x2−12xy+9y2
2xy4(4x2−12xy+9y2)
Apply the distributive property
2xy4×4x2−2xy4×12xy+2xy4×9y2
Multiply the terms
More Steps

Evaluate
2xy4×4x2
Multiply the numbers
8xy4x2
Multiply the terms
8x3y4
8x3y4−2xy4×12xy+2xy4×9y2
Multiply the terms
More Steps

Evaluate
2xy4×12xy
Multiply the numbers
24xy4xy
Multiply the terms
24x2y4×y
Multiply the terms
24x2y5
8x3y4−24x2y5+2xy4×9y2
Multiply the terms
More Steps

Evaluate
2xy4×9y2
Multiply the numbers
18xy4×y2
Multiply the terms
18xy6
8x3y4−24x2y5+18xy6
−58x3y4−24x2y5+18xy6
Show Solution

Find the excluded values
x=0
Evaluate
x2×x×5y2(3y−2x)(2×x22x−3y)y2
To find the excluded values,set the denominators equal to 0
x2=0
Solution
x=0
Show Solution
