Question
Find the roots
x1=18−123,x2=18+123
Alternative Form
x1≈−2.78461,x2≈38.78461
Evaluate
x2−36x−108
To find the roots of the expression,set the expression equal to 0
x2−36x−108=0
Substitute a=1,b=−36 and c=−108 into the quadratic formula x=2a−b±b2−4ac
x=236±(−36)2−4(−108)
Simplify the expression
More Steps

Evaluate
(−36)2−4(−108)
Multiply the numbers
More Steps

Evaluate
4(−108)
Multiplying or dividing an odd number of negative terms equals a negative
−4×108
Multiply the numbers
−432
(−36)2−(−432)
Rewrite the expression
362−(−432)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
362+432
Evaluate the power
1296+432
Add the numbers
1728
x=236±1728
Simplify the radical expression
More Steps

Evaluate
1728
Write the expression as a product where the root of one of the factors can be evaluated
576×3
Write the number in exponential form with the base of 24
242×3
The root of a product is equal to the product of the roots of each factor
242×3
Reduce the index of the radical and exponent with 2
243
x=236±243
Separate the equation into 2 possible cases
x=236+243x=236−243
Simplify the expression
More Steps

Evaluate
x=236+243
Divide the terms
More Steps

Evaluate
236+243
Rewrite the expression
22(18+123)
Reduce the fraction
18+123
x=18+123
x=18+123x=236−243
Simplify the expression
More Steps

Evaluate
x=236−243
Divide the terms
More Steps

Evaluate
236−243
Rewrite the expression
22(18−123)
Reduce the fraction
18−123
x=18−123
x=18+123x=18−123
Solution
x1=18−123,x2=18+123
Alternative Form
x1≈−2.78461,x2≈38.78461
Show Solution
