Question
Solve the quadratic equation
Solve using the quadratic formula
Solve by completing the square
Solve using the PQ formula
x1=20−1014,x2=20+1014
Alternative Form
x1≈−17.416574,x2≈57.416574
Evaluate
x2−40x−1000=0
Substitute a=1,b=−40 and c=−1000 into the quadratic formula x=2a−b±b2−4ac
x=240±(−40)2−4(−1000)
Simplify the expression
More Steps

Evaluate
(−40)2−4(−1000)
Multiply the numbers
More Steps

Evaluate
4(−1000)
Multiplying or dividing an odd number of negative terms equals a negative
−4×1000
Multiply the numbers
−4000
(−40)2−(−4000)
Rewrite the expression
402−(−4000)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
402+4000
Evaluate the power
1600+4000
Add the numbers
5600
x=240±5600
Simplify the radical expression
More Steps

Evaluate
5600
Write the expression as a product where the root of one of the factors can be evaluated
400×14
Write the number in exponential form with the base of 20
202×14
The root of a product is equal to the product of the roots of each factor
202×14
Reduce the index of the radical and exponent with 2
2014
x=240±2014
Separate the equation into 2 possible cases
x=240+2014x=240−2014
Simplify the expression
More Steps

Evaluate
x=240+2014
Divide the terms
More Steps

Evaluate
240+2014
Rewrite the expression
22(20+1014)
Reduce the fraction
20+1014
x=20+1014
x=20+1014x=240−2014
Simplify the expression
More Steps

Evaluate
x=240−2014
Divide the terms
More Steps

Evaluate
240−2014
Rewrite the expression
22(20−1014)
Reduce the fraction
20−1014
x=20−1014
x=20+1014x=20−1014
Solution
x1=20−1014,x2=20+1014
Alternative Form
x1≈−17.416574,x2≈57.416574
Show Solution
