Question
Solve the quadratic equation
Solve using the quadratic formula
Solve by completing the square
Solve using the PQ formula
x1=25−541,x2=25+541
Alternative Form
x1≈−7.015621,x2≈57.015621
Evaluate
x2−50x−400=0
Substitute a=1,b=−50 and c=−400 into the quadratic formula x=2a−b±b2−4ac
x=250±(−50)2−4(−400)
Simplify the expression
More Steps

Evaluate
(−50)2−4(−400)
Multiply the numbers
More Steps

Evaluate
4(−400)
Multiplying or dividing an odd number of negative terms equals a negative
−4×400
Multiply the numbers
−1600
(−50)2−(−1600)
Rewrite the expression
502−(−1600)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
502+1600
Evaluate the power
2500+1600
Add the numbers
4100
x=250±4100
Simplify the radical expression
More Steps

Evaluate
4100
Write the expression as a product where the root of one of the factors can be evaluated
100×41
Write the number in exponential form with the base of 10
102×41
The root of a product is equal to the product of the roots of each factor
102×41
Reduce the index of the radical and exponent with 2
1041
x=250±1041
Separate the equation into 2 possible cases
x=250+1041x=250−1041
Simplify the expression
More Steps

Evaluate
x=250+1041
Divide the terms
More Steps

Evaluate
250+1041
Rewrite the expression
22(25+541)
Reduce the fraction
25+541
x=25+541
x=25+541x=250−1041
Simplify the expression
More Steps

Evaluate
x=250−1041
Divide the terms
More Steps

Evaluate
250−1041
Rewrite the expression
22(25−541)
Reduce the fraction
25−541
x=25−541
x=25+541x=25−541
Solution
x1=25−541,x2=25+541
Alternative Form
x1≈−7.015621,x2≈57.015621
Show Solution
