Question
Solve the quadratic equation
Solve using the quadratic formula
Solve by completing the square
Solve using the PQ formula
x1=64−4121,x2=64+4121
Alternative Form
x1≈−0.195015,x2≈128.195015
Evaluate
x2−8x×16=25
Multiply the terms
x2−128x=25
Move the expression to the left side
x2−128x−25=0
Substitute a=1,b=−128 and c=−25 into the quadratic formula x=2a−b±b2−4ac
x=2128±(−128)2−4(−25)
Simplify the expression
More Steps

Evaluate
(−128)2−4(−25)
Multiply the numbers
More Steps

Evaluate
4(−25)
Multiplying or dividing an odd number of negative terms equals a negative
−4×25
Multiply the numbers
−100
(−128)2−(−100)
Rewrite the expression
1282−(−100)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
1282+100
Evaluate the power
16384+100
Add the numbers
16484
x=2128±16484
Simplify the radical expression
More Steps

Evaluate
16484
Write the expression as a product where the root of one of the factors can be evaluated
4×4121
Write the number in exponential form with the base of 2
22×4121
The root of a product is equal to the product of the roots of each factor
22×4121
Reduce the index of the radical and exponent with 2
24121
x=2128±24121
Separate the equation into 2 possible cases
x=2128+24121x=2128−24121
Simplify the expression
More Steps

Evaluate
x=2128+24121
Divide the terms
More Steps

Evaluate
2128+24121
Rewrite the expression
22(64+4121)
Reduce the fraction
64+4121
x=64+4121
x=64+4121x=2128−24121
Simplify the expression
More Steps

Evaluate
x=2128−24121
Divide the terms
More Steps

Evaluate
2128−24121
Rewrite the expression
22(64−4121)
Reduce the fraction
64−4121
x=64−4121
x=64+4121x=64−4121
Solution
x1=64−4121,x2=64+4121
Alternative Form
x1≈−0.195015,x2≈128.195015
Show Solution
