Question
Solve the inequality
x<2.240041
Alternative Form
x∈(−∞,2.240041)
Evaluate
x3−x−9<0
Rewrite the expression
x3−x−9=0
Find the critical values by solving the corresponding equation
x≈2.240041
Determine the test intervals using the critical values
x<2.240041x>2.240041
Choose a value form each interval
x1=1x2=3
To determine if x<2.240041 is the solution to the inequality,test if the chosen value x=1 satisfies the initial inequality
More Steps

Evaluate
13−1−9<0
Simplify
More Steps

Evaluate
13−1−9
1 raised to any power equals to 1
1−1−9
Apply the inverse property of addition
−9
−9<0
Check the inequality
true
x<2.240041 is the solutionx2=3
To determine if x>2.240041 is the solution to the inequality,test if the chosen value x=3 satisfies the initial inequality
More Steps

Evaluate
33−3−9<0
Subtract the numbers
More Steps

Evaluate
33−3−9
Evaluate the power
27−3−9
Subtract the numbers
15
15<0
Check the inequality
false
x<2.240041 is the solutionx>2.240041 is not a solution
Solution
x<2.240041
Alternative Form
x∈(−∞,2.240041)
Show Solution
