Question
Identify the conic
Find the standard equation of the ellipse
Find the center of the ellipse
Find the foci of the ellipse
Load more

112(x−12)2+28y2=1
Evaluate
x2+4y2−24x+32=0
Move the constant to the right-hand side and change its sign
x2+4y2−24x=0−32
Removing 0 doesn't change the value,so remove it from the expression
x2+4y2−24x=−32
Use the commutative property to reorder the terms
x2−24x+4y2=−32
To complete the square, the same value needs to be added to both sides
x2−24x+144+4y2=−32+144
Use a2−2ab+b2=(a−b)2 to factor the expression
(x−12)2+4y2=−32+144
Add the numbers
(x−12)2+4y2=112
Multiply both sides of the equation by 1121
((x−12)2+4y2)×1121=112×1121
Multiply the terms
More Steps

Evaluate
((x−12)2+4y2)×1121
Use the the distributive property to expand the expression
(x−12)2×1121+4y2×1121
Use the commutative property to reorder the terms
1121(x−12)2+4y2×1121
Multiply the numbers
More Steps

Evaluate
4×1121
Reduce the numbers
1×281
Multiply the numbers
281
1121(x−12)2+281y2
1121(x−12)2+281y2=112×1121
Multiply the terms
More Steps

Evaluate
112×1121
Reduce the numbers
1×1
Simplify
1
1121(x−12)2+281y2=1
Use a=a11 to transform the expression
112(x−12)2+281y2=1
Solution
112(x−12)2+28y2=1
Show Solution

Solve the equation
Solve for x
Solve for y
x=12+228−y2x=12−228−y2
Evaluate
x2+4y2−24x+32=0
Rewrite the expression
x2+4y2+32−24x=0
Rewrite in standard form
x2−24x+4y2+32=0
Substitute a=1,b=−24 and c=4y2+32 into the quadratic formula x=2a−b±b2−4ac
x=224±(−24)2−4(4y2+32)
Simplify the expression
More Steps

Evaluate
(−24)2−4(4y2+32)
Multiply the terms
More Steps

Evaluate
4(4y2+32)
Apply the distributive property
4×4y2+4×32
Multiply the terms
16y2+4×32
Multiply the numbers
16y2+128
(−24)2−(16y2+128)
Rewrite the expression
242−(16y2+128)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
242−16y2−128
Evaluate the power
576−16y2−128
Subtract the numbers
448−16y2
x=224±448−16y2
Simplify the radical expression
More Steps

Evaluate
448−16y2
Factor the expression
16(28−y2)
The root of a product is equal to the product of the roots of each factor
16×28−y2
Evaluate the root
More Steps

Evaluate
16
Write the number in exponential form with the base of 4
42
Reduce the index of the radical and exponent with 2
4
428−y2
x=224±428−y2
Separate the equation into 2 possible cases
x=224+428−y2x=224−428−y2
Simplify the expression
More Steps

Evaluate
x=224+428−y2
Divide the terms
More Steps

Evaluate
224+428−y2
Rewrite the expression
22(12+228−y2)
Reduce the fraction
12+228−y2
x=12+228−y2
x=12+228−y2x=224−428−y2
Solution
More Steps

Evaluate
x=224−428−y2
Divide the terms
More Steps

Evaluate
224−428−y2
Rewrite the expression
22(12−228−y2)
Reduce the fraction
12−228−y2
x=12−228−y2
x=12+228−y2x=12−228−y2
Show Solution

Testing for symmetry
Testing for symmetry about the origin
Testing for symmetry about the x-axis
Testing for symmetry about the y-axis
Not symmetry with respect to the origin
Evaluate
x2+4y2−24x+32=0
To test if the graph of x2+4y2−24x+32=0 is symmetry with respect to the origin,substitute -x for x and -y for y
(−x)2+4(−y)2−24(−x)+32=0
Evaluate
More Steps

Evaluate
(−x)2+4(−y)2−24(−x)+32
Multiply the terms
(−x)2+4y2−24(−x)+32
Multiply the numbers
(−x)2+4y2+24x+32
Rewrite the expression
x2+4y2+24x+32
x2+4y2+24x+32=0
Solution
Not symmetry with respect to the origin
Show Solution

Find the first derivative
Find the derivative with respect to x
Find the derivative with respect to y
dxdy=4y−x+12
Calculate
x2+4y2−24x+32=0
Take the derivative of both sides
dxd(x2+4y2−24x+32)=dxd(0)
Calculate the derivative
More Steps

Evaluate
dxd(x2+4y2−24x+32)
Use differentiation rules
dxd(x2)+dxd(4y2)+dxd(−24x)+dxd(32)
Use dxdxn=nxn−1 to find derivative
2x+dxd(4y2)+dxd(−24x)+dxd(32)
Evaluate the derivative
More Steps

Evaluate
dxd(4y2)
Use differentiation rules
dyd(4y2)×dxdy
Evaluate the derivative
8ydxdy
2x+8ydxdy+dxd(−24x)+dxd(32)
Evaluate the derivative
More Steps

Evaluate
dxd(−24x)
Use differentiation rule dxd(cf(x))=c×dxd(f(x))
−24×dxd(x)
Use dxdxn=nxn−1 to find derivative
−24×1
Any expression multiplied by 1 remains the same
−24
2x+8ydxdy−24+dxd(32)
Use dxd(c)=0 to find derivative
2x+8ydxdy−24+0
Evaluate
2x+8ydxdy−24
2x+8ydxdy−24=dxd(0)
Calculate the derivative
2x+8ydxdy−24=0
Move the expression to the right-hand side and change its sign
8ydxdy=0−(2x−24)
Subtract the terms
More Steps

Evaluate
0−(2x−24)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
0−2x+24
Removing 0 doesn't change the value,so remove it from the expression
−2x+24
8ydxdy=−2x+24
Divide both sides
8y8ydxdy=8y−2x+24
Divide the numbers
dxdy=8y−2x+24
Solution
More Steps

Evaluate
8y−2x+24
Rewrite the expression
8y2(−x+12)
Cancel out the common factor 2
4y−x+12
dxdy=4y−x+12
Show Solution

Find the second derivative
Find the second derivative with respect to x
Find the second derivative with respect to y
dx2d2y=16y3−4y2−x2+24x−144
Calculate
x2+4y2−24x+32=0
Take the derivative of both sides
dxd(x2+4y2−24x+32)=dxd(0)
Calculate the derivative
More Steps

Evaluate
dxd(x2+4y2−24x+32)
Use differentiation rules
dxd(x2)+dxd(4y2)+dxd(−24x)+dxd(32)
Use dxdxn=nxn−1 to find derivative
2x+dxd(4y2)+dxd(−24x)+dxd(32)
Evaluate the derivative
More Steps

Evaluate
dxd(4y2)
Use differentiation rules
dyd(4y2)×dxdy
Evaluate the derivative
8ydxdy
2x+8ydxdy+dxd(−24x)+dxd(32)
Evaluate the derivative
More Steps

Evaluate
dxd(−24x)
Use differentiation rule dxd(cf(x))=c×dxd(f(x))
−24×dxd(x)
Use dxdxn=nxn−1 to find derivative
−24×1
Any expression multiplied by 1 remains the same
−24
2x+8ydxdy−24+dxd(32)
Use dxd(c)=0 to find derivative
2x+8ydxdy−24+0
Evaluate
2x+8ydxdy−24
2x+8ydxdy−24=dxd(0)
Calculate the derivative
2x+8ydxdy−24=0
Move the expression to the right-hand side and change its sign
8ydxdy=0−(2x−24)
Subtract the terms
More Steps

Evaluate
0−(2x−24)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
0−2x+24
Removing 0 doesn't change the value,so remove it from the expression
−2x+24
8ydxdy=−2x+24
Divide both sides
8y8ydxdy=8y−2x+24
Divide the numbers
dxdy=8y−2x+24
Divide the numbers
More Steps

Evaluate
8y−2x+24
Rewrite the expression
8y2(−x+12)
Cancel out the common factor 2
4y−x+12
dxdy=4y−x+12
Take the derivative of both sides
dxd(dxdy)=dxd(4y−x+12)
Calculate the derivative
dx2d2y=dxd(4y−x+12)
Use differentiation rules
dx2d2y=(4y)2dxd(−x+12)×4y−(−x+12)×dxd(4y)
Calculate the derivative
More Steps

Evaluate
dxd(−x+12)
Use differentiation rules
dxd(−x)+dxd(12)
Evaluate the derivative
−1+dxd(12)
Use dxd(c)=0 to find derivative
−1+0
Evaluate
−1
dx2d2y=(4y)2−4y−(−x+12)×dxd(4y)
Calculate the derivative
More Steps

Evaluate
dxd(4y)
Simplify
4×dxd(y)
Calculate
4dxdy
dx2d2y=(4y)2−4y−(−x+12)×4dxdy
Calculate
More Steps

Evaluate
(−x+12)×4dxdy
Apply the distributive property
−x×4dxdy+12×4dxdy
Multiply the numbers
−4xdxdy+12×4dxdy
Multiply the numbers
−4xdxdy+48dxdy
dx2d2y=(4y)2−4y−(−4xdxdy+48dxdy)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
dx2d2y=(4y)2−4y+4xdxdy−48dxdy
Calculate
More Steps

Evaluate
(4y)2
Evaluate the power
42y2
Evaluate the power
16y2
dx2d2y=16y2−4y+4xdxdy−48dxdy
Calculate
dx2d2y=4y2−y+xdxdy−12dxdy
Use equation dxdy=4y−x+12 to substitute
dx2d2y=4y2−y+x×4y−x+12−12×4y−x+12
Solution
More Steps

Calculate
4y2−y+x×4y−x+12−12×4y−x+12
Multiply the terms
4y2−y+4yx(−x+12)−12×4y−x+12
Multiply the terms
More Steps

Multiply the terms
−12×4y−x+12
Cancel out the common factor 4
−3×y−x+12
Multiply the terms
−y3(−x+12)
4y2−y+4yx(−x+12)−y3(−x+12)
Calculate the sum or difference
More Steps

Evaluate
−y+4yx(−x+12)−y3(−x+12)
Reduce fractions to a common denominator
−4yy×4y+4yx(−x+12)−y×43(−x+12)×4
Use the commutative property to reorder the terms
−4yy×4y+4yx(−x+12)−4y3(−x+12)×4
Write all numerators above the common denominator
4y−y×4y+x(−x+12)−3(−x+12)×4
Multiply the terms
4y−4y2+x(−x+12)−3(−x+12)×4
Multiply the terms
4y−4y2−x2+12x−3(−x+12)×4
Multiply the terms
4y−4y2−x2+12x−(−12x+144)
Calculate the sum or difference
4y−4y2−x2+24x−144
4y24y−4y2−x2+24x−144
Multiply by the reciprocal
4y−4y2−x2+24x−144×4y21
Multiply the terms
4y×4y2−4y2−x2+24x−144
Multiply the terms
More Steps

Evaluate
4y×4y2
Multiply the numbers
16y×y2
Multiply the terms
16y3
16y3−4y2−x2+24x−144
dx2d2y=16y3−4y2−x2+24x−144
Show Solution

Rewrite the equation
r=−3cos2(θ)+412cos(θ)+415cos2(θ)−8r=−3cos2(θ)+412cos(θ)−415cos2(θ)−8
Evaluate
x2+4y2−24x+32=0
To convert the equation to polar coordinates,substitute x for rcos(θ) and y for rsin(θ)
(cos(θ)×r)2+4(sin(θ)×r)2−24cos(θ)×r+32=0
Factor the expression
(cos2(θ)+4sin2(θ))r2−24cos(θ)×r+32=0
Simplify the expression
(−3cos2(θ)+4)r2−24cos(θ)×r+32=0
Solve using the quadratic formula
r=−6cos2(θ)+824cos(θ)±(−24cos(θ))2−4(−3cos2(θ)+4)×32
Simplify
r=−6cos2(θ)+824cos(θ)±960cos2(θ)−512
Separate the equation into 2 possible cases
r=−6cos2(θ)+824cos(θ)+960cos2(θ)−512r=−6cos2(θ)+824cos(θ)−960cos2(θ)−512
Evaluate
More Steps

Evaluate
−6cos2(θ)+824cos(θ)+960cos2(θ)−512
Simplify the root
More Steps

Evaluate
960cos2(θ)−512
Factor the expression
64(15cos2(θ)−8)
Write the number in exponential form with the base of 8
82(15cos2(θ)−8)
Calculate
815cos2(θ)−8
−6cos2(θ)+824cos(θ)+815cos2(θ)−8
Evaluate
2(−3cos2(θ)+22)2(12cos(θ)+2215cos2(θ)−8)
Evaluate
−3cos2(θ)+2212cos(θ)+2215cos2(θ)−8
Calculate
−3cos2(θ)+412cos(θ)+415cos2(θ)−8
r=−3cos2(θ)+412cos(θ)+415cos2(θ)−8r=−6cos2(θ)+824cos(θ)−960cos2(θ)−512
Solution
More Steps

Evaluate
−6cos2(θ)+824cos(θ)−960cos2(θ)−512
Simplify the root
More Steps

Evaluate
960cos2(θ)−512
Factor the expression
64(15cos2(θ)−8)
Write the number in exponential form with the base of 8
82(15cos2(θ)−8)
Calculate
815cos2(θ)−8
−6cos2(θ)+824cos(θ)−815cos2(θ)−8
Evaluate
2(−3cos2(θ)+22)2(12cos(θ)−2215cos2(θ)−8)
Evaluate
−3cos2(θ)+2212cos(θ)−2215cos2(θ)−8
Calculate
−3cos2(θ)+412cos(θ)−415cos2(θ)−8
r=−3cos2(θ)+412cos(θ)+415cos2(θ)−8r=−3cos2(θ)+412cos(θ)−415cos2(θ)−8
Show Solution
