Question
Solve the equation
y=2x21+6x22x
Evaluate
x2(y−32x)×2=1
Multiply the terms
More Steps

Evaluate
x2(y−32x)×2
Use the commutative property to reorder the terms
2x2(y−32x)
Use the the distributive property to expand the expression
2x2y+2x2(−32x)
Multiply the terms
More Steps

Evaluate
2x2(−32x)
Rewrite the expression
−2x2×32x
Multiply the terms
−6x22x
2x2y−6x22x
2x2y−6x22x=1
Move the expression to the right-hand side and change its sign
2x2y=1+6x22x
Divide both sides
2x22x2y=2x21+6x22x
Solution
y=2x21+6x22x
Show Solution

Testing for symmetry
Testing for symmetry about the origin
Testing for symmetry about the x-axis
Testing for symmetry about the y-axis
Not symmetry with respect to the origin
Evaluate
x2(y−32x)×2=1
Multiply the terms
More Steps

Evaluate
x2(y−32x)×2
Use the commutative property to reorder the terms
2x2(y−32x)
Use the the distributive property to expand the expression
2x2y+2x2(−32x)
Multiply the terms
More Steps

Evaluate
2x2(−32x)
Rewrite the expression
−2x2×32x
Multiply the terms
−6x22x
2x2y−6x22x
2x2y−6x22x=1
To test if the graph of 2x2y−6x22x=1 is symmetry with respect to the origin,substitute -x for x and -y for y
2(−x)2(−y)−6(−x)22(−x)=1
Evaluate
More Steps

Evaluate
2(−x)2(−y)−6(−x)22(−x)
Multiply the numbers
2(−x)2(−y)−6(−x)2−2x
Multiply
More Steps

Multiply the terms
2(−x)2(−y)
Any expression multiplied by 1 remains the same
−2(−x)2y
Multiply the terms
−2x2y
−2x2y−6(−x)2−2x
Multiply the terms
−2x2y−6x2−2x
−2x2y−6x2−2x=1
Solution
Not symmetry with respect to the origin
Show Solution

Find the first derivative
Find the derivative with respect to x
Find the derivative with respect to y
dxdy=2×x−22×y+15x
Calculate
x2(y−32x)2=1
Simplify the expression
2x2y−6x22x=1
Take the derivative of both sides
dxd(2x2y−6x22x)=dxd(1)
Calculate the derivative
More Steps

Evaluate
dxd(2x2y−6x22x)
Use differentiation rules
dxd(2x2y)−dxd(6x22x)
Evaluate the derivative
More Steps

Evaluate
dxd(2x2y)
Use differentiation rules
dxd(2x2)×y+2x2×dxd(y)
Evaluate the derivative
4xy+2x2×dxd(y)
Evaluate the derivative
4xy+2x2dxdy
4xy+2x2dxdy−dxd(6x22x)
Evaluate the derivative
More Steps

Evaluate
dxd(6x22x)
Use differentiation rules
dxd(6)×x22x+6×dxd(x2)×2x+6x2×dxd(2x)
Use dxdxn=nxn−1 to find derivative
dxd(6)×x22x+12x2x+6x2×dxd(2x)
Evaluate the derivative
dxd(6)×x22x+12x2x+2x6x2
Calculate
12x2x+2x6x2
4xy+2x2dxdy−12x2x−2x6x2
Calculate
2x4xy2x+2x2dxdy×2x−30x2
2x4xy2x+2x2dxdy×2x−30x2=dxd(1)
Calculate the derivative
2x4xy2x+2x2dxdy×2x−30x2=0
Rewrite the expression
2x4xy2x−30x2+2x22x×dxdy=0
Simplify
4xy2x−30x2+2x22x×dxdy=0
Move the constant to the right side
2x22x×dxdy=0−(4xy2x−30x2)
Subtract the terms
More Steps

Evaluate
0−(4xy2x−30x2)
Removing 0 doesn't change the value,so remove it from the expression
−(4xy2x−30x2)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−4xy2x+30x2
2x22x×dxdy=−4xy2x+30x2
Divide both sides
2x22x2x22x×dxdy=2x22x−4xy2x+30x2
Divide the numbers
dxdy=2x22x−4xy2x+30x2
Divide the numbers
More Steps

Evaluate
2x22x−4xy2x+30x2
Rewrite the expression
2x22x2(−2xy2x+15x2)
Reduce the fraction
x22x−2xy2x+15x2
Rewrite the expression
x22xx(−2y2x+15x)
Reduce the fraction
More Steps

Evaluate
x2x
Use the product rule aman=an−m to simplify the expression
x2−11
Subtract the terms
x11
Simplify
x1
x2x−2y2x+15x
dxdy=x2x−2y2x+15x
Solution
More Steps

Evaluate
x2x−2y2x+15x
Factor the expression
x2xx×(−22×y+15x)
Factor the expression
x2×xx×(−22×y+15x)
Reduce the fraction
x2−22×y+15x
Calculate
2×x−22×y+15x
dxdy=2×x−22×y+15x
Show Solution
