Question
Find the roots
x1=211−193,x2=211+193
Alternative Form
x1≈−1.446222,x2≈12.446222
Evaluate
x2−11x−18
To find the roots of the expression,set the expression equal to 0
x2−11x−18=0
Substitute a=1,b=−11 and c=−18 into the quadratic formula x=2a−b±b2−4ac
x=211±(−11)2−4(−18)
Simplify the expression
More Steps

Evaluate
(−11)2−4(−18)
Multiply the numbers
More Steps

Evaluate
4(−18)
Multiplying or dividing an odd number of negative terms equals a negative
−4×18
Multiply the numbers
−72
(−11)2−(−72)
Rewrite the expression
112−(−72)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
112+72
Evaluate the power
121+72
Add the numbers
193
x=211±193
Separate the equation into 2 possible cases
x=211+193x=211−193
Solution
x1=211−193,x2=211+193
Alternative Form
x1≈−1.446222,x2≈12.446222
Show Solution
