Question
Solve the quadratic equation
Solve using the quadratic formula
Solve by completing the square
Solve using the PQ formula
x1=13496−134962+27,x2=13496+134962+27
Alternative Form
x1≈−0.001,x2≈26992.001
Evaluate
x2−26992x−27=0
Substitute a=1,b=−26992 and c=−27 into the quadratic formula x=2a−b±b2−4ac
x=226992±(−26992)2−4(−27)
Simplify the expression
More Steps

Evaluate
(−26992)2−4(−27)
Multiply the numbers
More Steps

Evaluate
4(−27)
Multiplying or dividing an odd number of negative terms equals a negative
−4×27
Multiply the numbers
−108
(−26992)2−(−108)
Rewrite the expression
269922−(−108)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
269922+108
x=226992±269922+108
Simplify the radical expression
x=226992±2134962+27
Separate the equation into 2 possible cases
x=226992+2134962+27x=226992−2134962+27
Simplify the expression
More Steps

Evaluate
x=226992+2134962+27
Divide the terms
More Steps

Evaluate
226992+2134962+27
Rewrite the expression
22(13496+134962+27)
Reduce the fraction
13496+134962+27
x=13496+134962+27
x=13496+134962+27x=226992−2134962+27
Simplify the expression
More Steps

Evaluate
x=226992−2134962+27
Divide the terms
More Steps

Evaluate
226992−2134962+27
Rewrite the expression
22(13496−134962+27)
Reduce the fraction
13496−134962+27
x=13496−134962+27
x=13496+134962+27x=13496−134962+27
Solution
x1=13496−134962+27,x2=13496+134962+27
Alternative Form
x1≈−0.001,x2≈26992.001
Show Solution
